• 제목/요약/키워드: Finite fields

검색결과 1,116건 처리시간 0.024초

변형된 다항식 기저를 이용한 유한체의 연산 (Arithmetic of finite fields with shifted polynomial basis)

  • 이성재
    • 정보보호학회논문지
    • /
    • 제9권4호
    • /
    • pp.3-10
    • /
    • 1999
  • 유한체(Galois fields)가 타원곡선 암호법 coding 이론 등에 응용되면서 유한체의 연 산은 더많은 관심의 대상이 되고 있다. 유한체의 연산은 표현방법에 많은 영향을 받는다. 즉 최적 정규기 저는 하드웨 어 구현에 용이하고 Trinomial을 이용한 다항식 기저는 소프트웨어 구현에 효과적이다. 이논문에서는 새로운 변형된 다항식 기저를 소개하고 AOP를 이용한 경우 하드웨어 구현에 효과적인 최 적 정규기저와 의 변환이 위치 변화로 이루어지고 또한 이것을 바탕으로 한 유한체의 연산이 소프트웨어적 으로 효율적 임을 보인다. More concerns are concentrated in finite fields arithmetic as finite fields being applied for Elliptic curve cryptosystem coding theory and etc. Finite fields arithmetic is affected in represen -tation of those. Optimal normal basis is effective in hardware implementation and polynomial field which is effective in the basis conversion with optimal normal basis and show that the arithmetic of finite field with the basis is effective in software implementation.

A Study on Construction of the Advanced Sequential Circuit over Finite Fields

  • Park, Chun-Myoung
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.323-328
    • /
    • 2019
  • In this paper, a method of constructing an advanced sequential circuit over finite fields is proposed. The method proposed an algorithm for assigning all elements of finite fields to digital code from the properties of finite fields, discussed the operating characteristics of T-gate used to construct sequential digital system of finite fields, and based on this, formed sequential circuit without trajectory. For this purpose, the state transition diagram was allocated to the state dependency code and a whole table was drawn showing the relationship between the status function and the current state and the previous state. The following status functions were derived from the status function and the preceding table, and the T-gate and the device were used to construct the sequential circuit. It was confirmed that the proposed method was able to organize sequential digital systems effectively and systematically.

POLYNOMIAL REPRESENTATIONS FOR n-TH ROOTS IN FINITE FIELDS

  • Chang, Seunghwan;Kim, Bihtnara;Lee, Hyang-Sook
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.209-224
    • /
    • 2015
  • Computing square, cube and n-th roots in general, in finite fields, are important computational problems with significant applications to cryptography. One interesting approach to computational problems is by using polynomial representations. Agou, Del$\acute{e}$eglise and Nicolas proved results concerning the lower bounds for the length of polynomials representing square roots modulo a prime p. We generalize the results by considering n-th roots over finite fields for arbitrary n > 2.

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

유한체의 합성체위에서의 고속 연산기 (A Fast Multiplier of Composite fields over finite fields)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제6권3호
    • /
    • pp.389-395
    • /
    • 2011
  • 타원곡선 암호법(ECC)은 RSA나 ElGamal 암호법에 비하여 1/6정도의 열쇠(key) 크기로 동일한 안전도를 보장하므로, 메모리 용량이나 프로세서의 파워가 제한된 휴대전화기(cellular phone), 스마트카드, HPC(small-size computers) 등에 더욱 효과적인 암호법이다. 본 논문에서는 효과적인 타원곡선 암호법에 많이 사용되는 유한체위에서의 연산방법을 설명하고, Weil의 강하공격법(descent attack)에 안전하면서, 연산속도를 최대화하는 유한체의 합성체를 구축하여, 그 합성체위에서의 고속 연산기를 제안하려고 한다.

유한체위에서의 근점기저를 이용한 고속 타원곡선 암호법 (Fast Elliptic Curve Cryptosystems using Anomalous Bases over Finite Fields)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.387-393
    • /
    • 2015
  • 유한체위에서 ECC를 기반으로 하는 전자상거래 또는 비밀통신에서 송수신자가 서로 다른 기저를 사용하는 경우에는 기저변환으로 인한 통신지연이 발생하게 된다. 본 논문에서는 서로 다른 기저를 사용하는 H/W와 S/W 구현 시스템 사이의 비밀통신 또는 전자서명에 소요되는 기저변환의 횟수를 분석하여, 그로 인한 통신지연을 제거하기 위해서, All One Polynomial(AOP)을 사용하는 유한체위에서 하드웨어와 소프트웨어 구현 모두에 효과적이면서, 기저변환이 필요 없는 근점 기저를 소개하였다. 제안하는 근점기저를 사용한 곱셈기의 H/W 구현 결과, 삼항식과 다항식기저를 사용하는 곱셈기보다 연산 시간이 약 25% 감소하였다.

An Arithmetic System over Finite Fields

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.435-440
    • /
    • 2011
  • This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fields. The addition arithmetic operation over finite field is simple comparatively because that addition arithmetic operation is analyzed by each digit modP summation independently. But in case of multiplication arithmetic operation, we generate maximum k=2m-2 degree of ${\alpha}^k$ terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for the purpose of performing above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesizing ${\alpha}^k$ generation module and control signal CSt generation module with A-cell and M-cell. Next, we constructing the arithmetic operation unit over finite fields. Then, we propose the future research and prospects.

A CLASSIFICATION OF ELLIPTIC CURVES OVER SOME FINITE FIELDS

  • Park, Hwa-Sin;Park, Joog-Soo;Kim, Daey-Eoul
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.591-611
    • /
    • 2001
  • In this paper, we classify elliptic curve by isomorphism classes over some finite fields. We consider finite field as a quotient ring, saying $\mathbb{Z}[i]/{\pi}\mathbb{Z}[i]$ where $\pi$ is a prime element in $\mathbb{Z}[i]$. Here $\mathbb{Z}[i]$ is the ring of Gaussian integers.

THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.537-544
    • /
    • 2018
  • There is a standard construction of lifting cyclic codes over the prime finite field ${\mathbb{Z}}_p$ to the rings ${\mathbb{Z}}_{p^e}$ and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields ${\mathbb{F}}_{p^r}$ to codes over Galois rings GR($p^e$, r). We give concrete examples with all of the lifts.