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POLYNOMIAL REPRESENTATIONS

FOR n-TH ROOTS IN FINITE FIELDS

Seunghwan Chang, Bihtnara Kim, and Hyang-Sook Lee

Abstract. Computing square, cube and n-th roots in general, in finite
fields, are important computational problems with significant applications
to cryptography. One interesting approach to computational problems is
by using polynomial representations. Agou, Deléglise and Nicolas proved
results concerning the lower bounds for the length of polynomials rep-
resenting square roots modulo a prime p. We generalize the results by
considering n-th roots over finite fields for arbitrary n > 2.

1. Introduction

The problems of computing square roots and cube roots modulo a prime1 are
important computational problems and have significant applications to cryp-
tography. In general, computation of n-th roots in finite fields appears in
various aspects of cryptography.

There are efficient probabilistic algorithms for computing square roots mod-
ulo a prime, notably the algorithms due to Tonelli-Shanks [21, 20] and to
Cipolla-Lehmer [4, 11]. Due to Schoof [19], there is a deterministic algorithm
for square roots modulo a prime, which uses elliptic curves in an essential way.
The algorithms of Tonelli-Shanks and Cipolla-Lehmer can be generalized to
computing cube roots and more generally to computing n-th roots, but the
efficiency of the algorithms is guaranteed only in certain cases. Computing
n-th roots in a finite field can be carried out applying an algorithm due to
Adleman, Manders and Miller [1], which extends the square root algorithm of
Tonelli-Shanks. Recently, Barreto and Voloch [3] gave an efficient algorithm
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for n-th roots that can be applied to a large family of finite fields, which uses
an idea of “inverting exponents.”

One of the approaches to computational problems is to find polynomial
functions that, for given instances, output solutions to the problems. Let us call
this polynomial representation approach. This approach applied to the discrete
logarithm problems for finite fields and elliptic curves have been investigated
for example in [5, 8, 9, 10, 13, 14, 22, 23]. Recently, Satoh [15, 16, 17, 18]
investigated the approach for the pairing inversion problem, which concerns
bilinear pairings defined on elliptic curves over finite fields.

An interesting feature of polynomial representation approach is that once one
obtains a polynomial representing a solution for a given computational problem
and the number of non-zero coefficients of the polynomial is sufficiently small,
one may get an efficient algorithm, by evaluating, for solving the problem.

In [2], Agou, Deléglise and Nicolas investigated polynomial representations in
the case of square roots modulo a prime p. After they parametrize polynomials
representing square roots modulo p, they investigated the length2, i.e., the
number of nonzero coefficients, of the representing polynomials. They prove
that if p − 1 ≡ 2r (mod 4r), then there exist at least 2r polynomials P (X) ∈
Fp[X ] which represents square roots in F×

p with degP (X) < p−1
2 and whose

length is less than or equal to r. It is easy to see that if e is the largest positive
integer such that 2e | p − 1, then p − 1 ≡ 2 · 2e−1 (mod 22 · 2e−1) and in fact
r = 2e−1 is the smallest positive integer satisfying the congruence. They also
prove that for all but finitely many primes p, 2e−1 gives the lower bound for the
length of polynomials representing square roots. They suggest that “it would
be possible to study, in the same way, cubic roots and more generally, n-th
roots, for n > 2.”

In this article, we initiate the investigation of polynomial representations in
the general situation of n-th roots in finite fields. We generalize and extend
the results of Agou, Deléglise and Nicolas [2] to the case of cube roots and the
general case of n-th roots (for arbitrary n) in finite fields.

The rest of the article is organized as follows. In Section 2, we define what we
mean by a polynomial representing n-th roots in F×

q and give a parametrization
of the representing polynomials. In Section 3, we give a partial answer to
the question of how small the length of a representing polynomial can be.
Specifically, we prove a sufficient condition for existence of short representing
polynomials, and apply it to the situation of cube roots to get representing
polynomials of certain specific length, which turns out to be the minimum
length in most cases. Finally, we investigate the lower bounds for the length
of representing polynomials in Section 4. We prove that beside finitely many
primes q every polynomial which represents n-th roots in F×

q has length at least

ne−1, where e is the largest positive integer such that ne | q − 1.

2In certain contexts, it is also called the Hamming weight of the polynomial.
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2. Polynomials representing n-th roots

The approach of Agou, Deléglise and Nicolas to computing square roots
modulo a prime via polynomial representations can be generalized to n-th roots
in a finite field for arbitrary n ≥ 2. In this section, we give a definition of a
polynomial representing n-th roots in a finite field and prove basic properties
of those representing polynomials.

Before we begin, we give a summary of notations and assumptions that will
be used throughout the article.

Notations:

• q is a power of a prime;
• Fq is a field with q elements;
• n is a positive integer;
• e := vn(q − 1) is the largest non-negative integer such that ne | q − 1;
• len f(X) is the number of nonzero coefficients of a polynomial f(X).

Assumptions:

• n > 2; (see [2] for the case n = 2)
• n | q − 1. (see the paragraph right after Remark 2.4)

A basic tool for representing functions on finite fields as polynomials is the
following classical result due to Lagrange.

Theorem 2.1 (Lagrange interpolation formula). Let x0, . . . , xk−1 ∈ Fq be k
distinct elements. Let y0, . . . , yk−1 ∈ Fq be k (not necessarily distinct) elements.

Then there exists unique P (X) ∈ Fq[X ] with degP (X) < k such that P (xi) =
yi for all i ∈ {0, . . . , k − 1}. An explicit formula for P (X) is given by

P (X) =

k−1∑

i=0

yi

k−1∏

j=0,j 6=i

X − xj

xi − xj
.

The object that we are primarily interested in is the polynomial in Fq[X ]
which, considered as a function P : Fq → Fq, outputs one of the n-th roots of
the given input. Following [2], we formalize the notion as follows.

Definition 2.2. Let S ⊂ F×
q be a subset. We say that a polynomial P (X) ∈

Fq[X ] represents n-th roots in S if

P (xn)n = xn

for all x ∈ S.

Example 2.3. The n-th power map (·)n : F×
q → F×

q , x 7→ xn is a group homo-
morphism with kernel ker(·)n = µgcd(n,q−1). Suppose that gcd(n, q − 1) = 1.
Then ker(·)n = µgcd(n,q−1) = 1, and so the map (·)n is an isomorphism. Thus,
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for every t ∈ F×
q , there exists unique n-th root of t. Note that there exist a, b ∈ Z

such that an+ b(q− 1) = 1, and one can efficiently compute such a and b using
the extended Euclidean algorithm. Given t ∈ F×

q , one can compute the unique

n-th root of t by computing ta, namely, (ta)n = tantb(q−1) = tan+b(q−1) = t. As
a result, the monomial P (X) = Xa represents n-th roots in F×

q where a ∈ Z>0

is such that an + b(q − 1) = 1 for some b ∈ Z. Indeed, given t = xn with
x ∈ F×

q , we have P (t)n = P (xn)n = (xan)n = (xanxb(q−1))n = xn.

Remark 2.4. Suppose that P (X) ∈ Fq[X ] represents n-th roots in F×
q . Then

it is straightforward to check that αP (X) with α ∈ F×
q represents n-th roots if

and only if α ∈ µn.

For our purpose, we may narrow our focus to the situation that n | q − 1,
based on the following observation. Assume that 1 < n0 := gcd(n, q − 1) <
q − 1. We can write n = n0n1 where n1 := n/n0. Note that n0 | q − 1 and
gcd(n1, q−1) = 1. If P (X) is a polynomial representing n0-th roots in F×

q , then
the polynomial P (Xa) = P (X) ◦Xa, of the same length as P (X), represents
n-th roots in F×

q , where Xa is a monomial that represents n1-th roots in F×
q

(cf. Example 2.3).
We are mainly interested in the case where S = F×

q , but other subgroups

of F×
q will be considered in proving our assertions; see Theorem 3.2. If K is a

field and m is a positive integer not divisible by the characteristic char(K) of
K, let us denote µm(K) := {x ∈ K : xm = 1}. We will simply write µm for
µm(Fq) when K = Fq.

If S is a subgroup of F×
q , then S = µd for some positive divisor d of q − 1.

If ζ is a primitive root of Fq, then S = µd = {ζ
q−1

d
i | 0 ≤ i ≤ d − 1}. If n | d

(recall that we assume n | q − 1), then

Sn = µn
d = µ d

n

= {ζ
(q−1)n

d
i | 1 ≤ i ≤ d

n}.

Lemma 2.5. Let S = µd ⊂ F×
q where n | d. Let ζ be a primitive root of Fq.

The following are equivalent.

(1) P (X) represents n-th roots in S;
(2) P (t)n = t for all t ∈ Sn;

(3) P (ζ
(q−1)

d
ni)n = ζ

(q−1)

d
ni for all i ∈ {1, . . . , d

n};

(4) P (ζ
(q−1)

d
ni)n = ζ

(q−1)

d
ni for all i ∈ {0, . . . , d

n − 1}.

In particular, P (X) represents n-th roots in F×
q (= µq−1) if and only if P (ζni)n

= ζni for all i ∈ {1, . . . , q−1
n }.

Proof. The equivalence between (1) and (2) is clear. We show that (2) and (3)
are equivalent. As n | d, we have Sn = µ d

n

. Clearly, (2) implies (3). Note that

ζ
q−1

d
n generates Sn = µ d

n

. Thus, to verify that P (t)n = t for all t ∈ Sn, it

suffices to check that P ((ζ
(q−1)

d
i)n)n = (ζ

(q−1)

d
i)n for all i ∈ {1, . . . , d

n}. Note

that (3) and (4) are equivalent as ζ
q−1

d
n·0 = 1 = ζ

q−1

d
n· d

n . �
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Note that the notion of polynomial representing n-th roots does not depend
on the choice of ζ. We fix a primitive root ζ of Fq once and for all for the rest
of the article.

If P (X) represents n-th roots in S, then for each xn ∈ Sn, P (xn) is one of the
n-th roots of xn; P (xn) is not necessarily x. Since (P (xn)/x)n = P (xn)n/xn =
1, one has P (xn)/x ∈ µn. If we set σx := P (xn)/x ∈ µn, we have P (xn) = σxx.
Thus, we are motivated to introduce the following.

Definition 2.6. Let K be a field with char(K) ∤ n. We define

Σq−1(K) = {σ = (σ0, . . . , σ q−1

n
−1) | σj ∈ µn(K) for all j = 0, . . . , q−1

n − 1}.

In general, one can analogously define

Σd(K) = {σ = (σ0, . . . , σ d

n
−1) | σj ∈ µn(K) for all j = 0, . . . , d

n − 1}

if d | q−1. When K = Fq we simply write Σd for Σd(Fq). Note that #Σd = n
d

n .

By applying Theorem 2.1, we parametrize, in terms of Σq−1, polynomials
representing n-th roots in F×

q .

Theorem 2.7. We have the following.

(1) For each σ ∈ Σq−1, there exists unique Pσ(X) ∈ Fq[X ] of degree < q−1
n

such that

Pσ(ζ
ni) = σiζ

i

for all i ∈ {0, . . . , q−1
n − 1}. Moreover, if Pσ(X) =

∑ q−1

n
−1

k=0 ckX
k, then

the ck is explicitly given by

ck = −n

q−1

n
−1∑

i=0

σiζ
i(1−nk).

(2) If P (X) ∈ Fq[X ] represents n-th roots in F×
q and degP (X) < q−1

n ,

then P (X) = Pσ(X) for some σ ∈ Σq−1.

(3) A polynomial P (X) ∈ Fq[X ] represents n-th roots in F×
q if and only

if P (X) = Pσ(X) + (X
q−1

n − 1)H(X) for some σ ∈ Σq−1 and some

H(X) ∈ Fq[X ].

Proof. (1) The first claim is immediate from the Lagrange interpolation formula
(Theorem 2.1). To prove the second claim, it suffices to check that Pσ(X)
defined by the formula satisfies the conditions of the first claim. Indeed, if

we set P (X) =
∑ q−1

n
−1

k=0 ckX
k with ck = −n

∑ q−1

n
−1

i=0 σiζ
i(1−nk), then for all

i ∈ {0, . . . , q−1
n − 1} we have

P (ζni) = −n

q−1

n
−1∑

k=0

q−1

n
−1∑

j=0

σjζ
j(1−nk)(ζni)k
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= −n

q−1

n
−1∑

j=0

σjζ
j

q−1

n
−1∑

k=0

ζ(i−j)nk

= −n

q−1

n
−1∑

j=0, j 6=i

σjζ
j ·

1− ζ(i−j)(q−1)

1− ζ(i−j)n
− nσiζ

i ·
q − 1

n

= −nσiζ
i ·

q − 1

n

= σiζ
i.

Thus, P (X) = Pσ(X) by the uniqueness assertion of Theorem 2.1.
(2) Suppose that P (X) represents n-th roots in F×

q and degP (X) < q−1
n . Let

σi = P (ζni)/ζi ∈ µn for each i ∈ {0, . . . , q−1
n − 1} and σ = (σ0, . . . , σ q−1

n
−1) ∈

Σq−1. We claim that P (X) = Pσ(X). Note that for all i ∈ {0, . . . , q−1
n − 1},

we have P (ζni) = σiζ
i = Pσ(ζ

ni). Thus, P (X) = Pσ(X) by the uniqueness
assertion of Theorem 2.1.

(3) If P (X) ∈ Fq[X ] represents n-th roots in F×
q , write P (X) = R(X) +

(X
q−1

n − 1)H(X) where R(X), H(X) ∈ Fq[X ] and degR(X) < q−1
n . It is

straightforward to check thatR(X) represents n-th roots in F×
q . As degR(X) <

q−1
n , R(X) = Pσ(X) for some σ ∈ Σq−1. The converse is straightforward. �

We will simply say representing polynomials meaning “polynomials repre-
senting n-th roots in F×

q ” whenever there seems no confusion.

3. Short representing polynomials

In the previous section, we identified the polynomials that represent n-th
roots in F×

q . In this section and the next, we are interested in the length of the

polynomial that represents n-th roots in F×
q .

In the current section, we want to “locate” some representing polynomials
that are “short,” having relatively small number of nonzero coefficients. As a
main theorem (Theorem 3.2 below) of this section we will prove a sufficient
condition for the existence of representing polynomials that are short. This
generalizes in a natural way Theorem 2 of [2], which applies to all odd primes
q to produce polynomials representing square roots in F×

q of length ≤ 2e where
e is the largest positive integer such that 2e | q − 1; see Theorem 3 of [2].

Before getting into main results of this section, we take a look at a simple
lemma concerning the length of polynomials, which had been proven in [2].
Recall that we denote the length of a polynomial P (X) by lenP (X).

Lemma 3.1 (Lemma 1 of [2]). Let K be a field and let m ∈ Z>0. For every

polynomial P (X) ∈ K[X ] we have lenR(X) ≤ lenP (X) where R(X) is the

remainder in the Euclidean division of P (X) by Xm − 1.
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Proof. Note that the remainder in the division of the monomialXk byXm−1 is

Xk where k is the remainder in the division of k bym. Thus, if P (X) =
∑

aiX
i,

then R(X) =
∑

aiX
i. Clearly we have lenR(X) ≤ lenP (X). �

We are ready to prove a theorem, which asserts that a certain congruence
guarantees existence of representing polynomials with lengths bounded above
by a certain positive integer that is involved in the congruence.

Theorem 3.2. Let r ∈ Z>0 be such that q ≡ 1 − δnr (mod δn2r) for some

δ ∈ {1, . . . , n−1} with gcd(δ, n) = 1. Then there exist at least nr/r0 polynomials

P (X) ∈ Fq[X ] representing n-th roots in F×
q such that degP (X) < q−1

n and

lenP (X) ≤ r, where r0 is the product, counting multiplicities, of all primes

dividing r but not dividing n. In particular, if every prime divisor of r divides

n, then there exist at least nr polynomials P (X) ∈ Fq[X ] representing n-th

roots in F×
q such that degP (X) < q−1

n and lenP (X) ≤ r.

Proof. First we prove the theorem under the assumption that every prime
divisor of r divides n. Write q − 1 = −δnr + δn2rk with k ∈ Z>0. Since
gcd(δ, n) = 1, there exists γ ∈ {1, . . . , n − 1} such that γδ ≡ 1 (mod n).
Write γδ = 1 + nl with l ∈ Z>0. Then γ(q − 1) = γ(−δnr + δn2rk) =
−(1+nl)nr+γδn2rk = −nr+n2r(−l+γδk). Thus, γ(q−1) ≡ −nr ( mod n2r),

so that γ(q−1)+nr
n2r ∈ Z>0.

Note that µnr ⊂ F×
q since nr | q − 1. Let

Q = {Q(X) ∈ Fq[X ] | Q(xn)n =
1

xn
∀x ∈ µnr, degQ(X) < r}.

Namely, elements of Q are precisely the polynomials of degree < r that “rep-
resent the reciprocals of n-th roots in µnr.” The cardinality of Q is nr by a
similar argument as in the proof of Theorem 2.7. For each Q(X) ∈ Q, we will
be able to construct P (X) satisfying the desired properties in the theorem.

Given Q(X) ∈ Q, we define a polynomial

S(X) = X
γ(q−1)+nr

n2r Q
(
X

γ(q−1)

nr

)
∈ Fq[X ],

noting that γ(q−1)+nr
n2r , γ(q−1)

nr ∈ Z≥0. First, we observe that S(X) represents
n-th roots in F×

q :

S(xn)n =
(
x

γ(q−1)+nr

nr

)n

Q
((

x
γ(q−1)

nr

)n)n

= x
γ(q−1)+nr

r

(
x

γ(q−1)

nr

)−n

= xn

for all x ∈ F×
q , since (F×

q )
γ(q−1)

nr ⊂ µnr. Next, we have lenS(X) = lenQ(X) ≤
degQ(X) + 1 ≤ r since degQ(X) < r. Lastly, we look at the degree of S(X):

degS(X) ≤ γ(q−1)+nr
n2r +(r−1)γ(q−1)

nr = γ(q−1)
n + nr+(1−n)γ(q−1)

n2r < γ(q−1)
n since

nr + (1− n)γ(q − 1) = nr(1 + (1− n)(nk − 1)γδ) < 0.
Now we define P (X) to be the remainder in the Euclidean division of S(X)

by X
q−1

n − 1. By the assertion (3) of Theorem 2.7, P (X) represents n-th roots



216 S. CHANG, B. KIM, AND H.-S. LEE

in F×
q . By Lemma 3.1, lenP (X) ≤ lenS(X) ≤ r. Clearly, degP (X) < q−1

n . In

fact, P (X) = S(X) if and only if deg S(X) < q−1
n .

What remains to be seen is that the associationQ(X) 7→ P (X) is one-to-one.
Suppose that Q1(X), Q2(X) ∈ Q with Q1(X) 6= Q2(X) and that P1(X), P2(X)
are the resulting polynomials of the association, respectively. We are going to
show that P1(X) 6= P2(X). There exist T1(X), T2(X) ∈ Fq[X ] such that

X
γ(q−1)+nr

n2r Qi

(
X

γ(q−1)

nr

)
= (X

q−1

n − 1)Ti(X) + Pi(X)

for i ∈ {1, 2}. As gcd(γ, n) = 1, we have gcd(γ, r) = 1 (by the assumption in
the beginning of the proof) and the map x 7→ xγ defines an automorphism on
µr. In particular, we have

µr = {ζ
γ(q−1)

r , ζ
2γ(q−1)

r , . . . , ζ
rγ(q−1)

r }.

(Recall that ζ is the fixed primitive root of Fq.) Since Q1(X), Q2(X) ∈ Q
and Q1(X) 6= Q2(X), the polynomials Q1(X) and Q2(X) define distinct func-

tions on µn
nr = µr, i.e., there exists j ∈ {1, . . . , r} such that Q1(ζ

jγ(q−1)

r ) 6=

Q2(ζ
jγ(q−1)

r ). Let x ∈ F×
q be such that x

γ(q−1)

r = ζ
jγ(q−1)

r ; one can take x = ζj

for instance. Then Pi(x
n) = x

γ(q−1)+nr

nr Qi(ζ
jγ(q−1)

r ). We have P1(x
n) 6= P2(x

n)

since Q1(ζ
jγ(q−1)

r ) 6= Q2(ζ
jγ(q−1)

r ). Thus, P1(X) 6= P2(X).
Now we turn to the case that some prime divisor of r does not divide n.

Let r0 be the product, counting multiplicities, of all primes s such that s |
r and s ∤ n. Then δ1 := δr0, r1 := r/r0 satisfy the congruence q ≡ 1 −
δ1nr1 ( mod δ1n

2r1). Now every prime divisor of r1 divides n. By what we have
proven already there exist at least nr1 polynomials P (X) ∈ Fq[X ] representing

n-th roots in F×
q such that degP (X) < q−1

n , lenP (X) ≤ r1 < r, and we are
done. �

Theorem 3.3. Assume that n = 3 and that q is odd. Then q − 1 ≡ δ ·
3e (mod δ · 3e+1) for unique δ ∈ {1, 2}. As a consequence, there exist at

least 33
e−1

polynomials P (X) ∈ Fq[X ] that represent cube roots in F×
q and

lenP (X) ≤ 3e−1.

Proof. As e = v3(q − 1), there exists unique δ ∈ {1, 2} such that q − 1 ≡
δ · 3e (mod 3e+1). Write q − 1 = δ · 3e + 3e+1k with k ∈ Z≥0. If δ = 1, we
are done. If δ = 2, then k is even since both δ · 3e and q − 1 are even. Thus,
q − 1 = δ · 3e + δ · 3e+1k′ where k′ = k/2 ∈ Z≥0. �

By Theorem 3.3, the minimum length of representing polynomials for cube
roots is bounded above by 3e−1; also note that, by Theorem 3 of [2], the
minimum length of representing polynomials for square roots is bounded by
2e−1. It will be interesting to see if this phenomena persists for arbitrary n. In
Theorem 4.1 of Section 4, we will prove that for all but finitely many primes
q such that vn(q − 1) = e, the length of representing polynomials is bounded
below by ne−1.
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Now we investigate the relationship between existence of monomials and
binomials that represent n-th roots in F×

q and e = vn(q − 1), starting with an
example.

Example 3.4. Let q = 13, n = 3 and r = 1. Then q = 1 − 2nr + 2n2r, i.e.,
δ = 2 in the congruence of Theorem 3.2; e = 1. Note that µ3 = {1, 3, 9}. There
are precisely 3 polynomials that represent cube roots in F×

q , i.e., P1(X) =

X3, P (X) = 3X3, P (X) = 9X3. For instance, P1(ζ
3i)3 = ((ζ3i)3)3 = ζ3i as

ζ24i = 1 by Fermat’s theorem.

As a matter of fact, one can prove a criterion for the existence of representing
monomials.

Proposition 3.5. There exists a monomial P (X) = aX i ∈ Fq[X ] that rep-

resents n-th roots in F×
q if and only if q − 1 ≡ δn (mod n2) for some δ ∈

{1, . . . , n− 1} with gcd(δ, n) = 1. In particular, if n is a prime, then there ex-

ists a monomial representing n-th roots in F×
q if and only if e := vn(q− 1) = 1.

Proof. (⇒) Suppose that P (X) = aX i represents n-th roots in F×
q . We may

assume that i > 0. We have 1 = P (1)n = an, so that a ∈ µn. We have

ζn = P (ζn)n = an(ζni)n = ζn
2i, which implies that ζn(ni−1) = 1. Since ζ

generates F×
q , we have ne | q− 1 | n(ni− 1), and so ne−1 | ni− 1. Thus, e = 1.

Now, we write q − 1 = δn + kn2 where δ ∈ {1, . . . , n− 1}, k ∈ Z>0, and show
that gcd(n, δ) = 1. Again as ζn(ni−1) = 1, the exponent n(ni − 1) must be
divisible by q − 1 = δn+ kn2. Then δ + kn | ni− 1. Hence gcd(n, δ) = 1.

(⇐) Let C = q−1
n γ ∈ Z>0, where γ ∈ Z>0 is such that γδ ≡ −1 (mod n2).

Note that
C + 1

n
=

1

n

(
q − 1

n
γ + 1

)
=

(q − 1)γ + n

n2
∈ Z>0

since (q − 1)γ + n ≡ (q − 1)γ − γδn ≡ γ(q − 1− δn) ≡ 0 (mod n2). We claim

that P (X) = X
C+1

n represents n-th roots in F×
q . Indeed, we have P (xn)n =

((xn)
C+1

n )n = (xn)Cxn = x(q−1)γxn = xn for all x ∈ F×
q . �

Note that the criterion in Proposition 3.5 only depends on e = vn(q−1) and
q−1
ne (mod n). In view of Theorem 3.2 and a result on square roots (Theorem 5
of [2]), we can prove the following propositions on the existence of representing
binomials.

Proposition 3.6. If there exists a binomial P (X) ∈ Fq[X ] that represents cube
roots in F×

q , then e = v3(q − 1) = 1.

Proof. Suppose that we are given a binomial P (X) ∈ Fq[X ] that represents
cube roots in F×

q . Let R(X) be the remainder in the division of P (X) by

X
q−1

3 − 1. If R(X) is a monomial, then e = 1 by Proposition 3.5, and we are

done. Thus, we may assume that P (X) = aX i + bXj with 0 ≤ i < j < q−1
3

and a, b ∈ F×
q .
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Suppose 32 | q − 1, and we will get a contradiction. Since P (x3)3 = x3 for
all x ∈ F×

q , the polynomial Xq−1 − 1 divides

P (X3)3 −X3 = a3X9i + 3a2bX6i+3j + 3ab2X3i+6j + b3X9j −X3.

Then we have

a3X9i + 3a2bX6i+3j + 3ab2X3i+6j + b3X9j −X3 = 0,

where k denotes the remainder in the division of k by q − 1; see the proof of
Lemma 3.1. As 3 | q − 1, we have q ≥ 4. Noting that e = v3(q − 1) = 1
when q = 4, we assume that q > 4, which implies that 3 = 3. Clearly, 9i
and 9j cannot be 3 since 9 | q − 1 and 9 ∤ 9i − 3, 9j − 3. Hence, two out of
9i, 6i+ 3j, 3i+ 6j, 9j and 3 are equal to an integer and the remaining three to
a different one. Thus, either 6i+ 3j or 3i+ 6j must be equal to 3. The only
possibility is that we have 9i = 9j and 6i+ 3j = 3i+ 6j = 3; for instance, if
6i+ 3i = 9i = 9j, then q−1 | 9i−(6i+3j) = 3(i−j), which is impossible since
0 <| i− j |< q−1

3 . As a result, we have q−1
3 | (2i+ j − 1) and q−1

3 (i+ 2j − 1),

which implies q−1
3 | (2i+j−1)−(i+2j−1) = i−j, which is a contradiction. �

Proposition 3.7. If there exists a binomial P (X) ∈ Fq[X ] that represents 4-th
roots in F×

q , then e = v4(q − 1) = 1.

Proof. Suppose that we are given a binomial P (X) ∈ Fq[X ] that represents
4-th roots in F×

q . By the same argument as in the proof of Proposition 3.6, we

may assume that P (X) = aX i + bXj with 0 ≤ i < j < q−1
4 and a, b ∈ F×

q .

Suppose 42 | q − 1, and we will get a contradiction. Since P (x4)4 = x4 for
all x ∈ F×

q , the polynomial Xq−1 − 1 divides

P (X4)4−X4=a4X16i+4a3bX12i+4j+6a2b2X8i+8j+4ab3X4i+12j+b4X16j−X4,

and so we have

a4X16i + 4a3bX12i+4j + 6a2b2X8i+8j + 4ab3X4i+12j + b4X16j −X4 = 0.

Similarly as in the proof of Proposition 3.6, we note that:

• we may assume q > 5 and have 4 = 4 as a consequence (the main
assertion holds automatically when q = 5);

• 16i and 16j cannot be 4: if 16i = 4, then 42 | q − 1 | 16i− 4, which is
impossible. Similarly for 16j.

Thus, there must exist a partition P of the set

{(16i, 1), (12i+ 4j, 2), (8i+ 8j, 3), (4i+ 12j, 4), (16j, 5), (4, 6)}

of six elements such that each member of P has cardinality at least 2, and
so the cardinality of P is either 2 or 3. Thus, there cannot be more than 3
non-equivalent elements. Note the following.

• 16i cannot be 12i+ 4j (and 16j cannot be 4i+ 12j ): if 16i = 12i+ 4j,
then q − 1 | 16i − (12i + 4j) = 4(i − j), so that q−1

4 | i − j, which is

impossible. Similarly for 16j.
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• 12i+ 4j and 4i+ 12j cannot be 8i+ 8j: similar to the item just above.

We analyze the situation by dividing into two cases according to whether
12i+ 4j and 4i+ 12j coincide, each of which leads to a contradiction.
Case 1. Assume that 12i+ 4j = 4i+ 12j.

We have q − 1 | 12i + 4i − (4i + 12j) = 8(i − j), so that q−1
4 | 2(j −

i). Then 2(j − i) = q−1
4 since 0 ≤ i < j < q−1

4 . It is straightforward to

check that 16i = 16j. Also note that 8i+ 8j 6= 4; otherwise we would have
16 | 16i − 4, which is impossible. Now 12i+ 4j = 4i+ 12j constitutes an
equivalent class C1 ∈ P and 16i = 16j another distinct class C2, namely,
{(12i+ 4j, 2), (4i+ 12j, 4)} ⊂ C1 and {(16i, 1), (16j, 5)} ⊂ C2. Note that we
cannot have 12i+ 4j = 4i+ 12j = 4; if we do, we get 16 | 12i+4j−4, 4i+12j−4
and so 16 | 16(i+j)−8, which is impossible. We conclude that 4 = 4 is equal to
none of 16i, 12i+ 4j, 8i+ 8j, 4i+ 12j, 16j. But this contradicts the fact that
each class in P contains at least two elements.
Case 2. Assume that 12i+ 4j 6= 4i+ 12j.

Note that each of 12i+ 4j, 4i+ 12j and 8i+ 8j forms distinct equivalent
class. Then each of 16i, 16j and 4 must be equal to exactly one of 12i+ 4j,
4i+ 12j, 8i+ 8j. (i) If 4 = 8i+ 8j, then 16 | 8(i + j) − 4, a contradiction.
(ii) If 4 = 12i+ 4j, then 16i = 4i+ 12j and 16j = 8i+ 8j, which implies that
q−1
4 | 3(i − j) and q−1

4 | 2(j − i). Then q−1
4 | i − j, which is a contradiction.

(iii) The case 4 = 4i+ 12j is similar to (ii). �

One can expect that the result holds in general, in other words, for n ≥ 3,
if there exists a binomial P (X) ∈ Fq[X ] that represents n-th roots in F×

q , then
e = vn(q − 1) ≤ 1.

4. Lower bounds for the lengths of representing polynomials

A natural question related to Theorem 3.2 and Theorem 3.3 of the previous
section is whether there exist polynomials P (X) ∈ Fq[X ] representing n-th
roots with strict inequality lenP (X) < ne−1. In the present section, we are
going to give an answer to the question, restricted to the case that q is a prime.
We assume that q denotes a prime number throughout this section.

Given e ∈ Z>0, let [e] denote the set of all primes q ∈ Z such that vn(q −
1) = e. Denote by [e]− the subset of [e] consisting of elements q such that
there exists a polynomial P (X) ∈ Fq[X ] that represents n-th roots in F×

q with

lenP (X) < ne−1. Set [e]+ = [e] \ [e]−, so that [e] is the disjoint union of [e]−

and [e]+.

Theorem 4.1. The set [e]− is finite.

Thus, beside a finite number of exceptional primes q, ne−1 gives the lower
bound for the length of representing polynomials. To prove the theorem, we
follow the overall strategy of [2]. A challenge in dealing with the case n > 2
is to be able to lift roots of unity in finite fields Fq to (the ring of integers of)
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a number field in such a way that the lifting followed by reduction modulo a
certain prime ideal induces a group isomorphism, which is a nontrivial task3.
Before proving Theorem 4.1, we prove a lemma which ensures the existence of
such a characteristic zero lift of n-th roots of unity in finite characteristic.

Let ζn ∈ C be a primitive n-th root of unity and let K = Q(ζn). We denote
by OK the ring of integers of K. We denote by NL/K the norm of a finite
separable field extension L/K.

Lemma 4.2. Let q ⊂ OK be a prime ideal lying over q. If q ∤ n, then

ord(ζn mod q) = n as a group element of (OK/q)×.

Proof. First we prove the simplest case that n is a prime. Clearly, ord(ζn mod
q) divides n as (ζn mod q)n = ζnn mod q = 1 mod q. If ord(ζn mod q) = 1, then
1− ζn ∈ q. But this is impossible since nOK = pn−1 where p = (1− ζn) ⊳OK .
Thus, ord(ζn mod q) = n as n is a prime.

For the general case, let n = pe11 · · · pess where the pj are distinct primes

different from q and ej ≥ 1. We need to show that 1 − ζ
n/pj

n 6∈ q for all
j ∈ {1, . . . , s}. It suffices to prove it for j = 1 (by permuting the indices).

Suppose that 1 − ζkn ∈ q where k = n/p1 = pe1−1
1 pe22 · · · pess . Note that ζkn is

a primitive p1-th root of unity. The minimal polynomial of 1 − ζkn is Φp1
(1 −

X) where Φp1
(X) = Xp1−1

X−1 = Xp1−1 + · · · + X + 1 is the p1-th cyclotomic

polynomial. Then NQ(ζk
n
)/Q(1 − ζkn) = Φp1

(1 − 0) = p1. Thus, NK/Q(1 −

ζkn) = NQ(ζk
n
)/Q(NK/Q(ζk

n
)(1−ζkn)) = NQ(ζk

n
)/Q((1−ζkn)

[K:Q(ζk

n
)]) = NQ(ζk

n
)/Q((1−

ζkn))
[K:Q(ζk

n
)] = p

[K:Q(ζk

n
)]

1 = p
p
e1−1

1
(p2−1)p

e2

2
···(ps−1)pes

s

1 . As a consequence, we

have (1 − ζkn) | (p
p
e1−1

1
(p2−1)p

e2

2
···(ps−1)pes

s

1 ). Thus, q ∤ (1 − ζkn). Indeed, if q |

(1−ζkn), then q | p1, which is impossible since q | q. Now, as 1−ζ
n/pj

n 6∈ q for all

j ∈ {1, . . . , s}, we have ζ
n/pj

n 6≡ 1 (mod q). Thus, ord(ζn (mod q)) = n. �

Corollary 4.3. The canonical surjection π : OK → OK/q induces a group

isomorphism π : 〈ζn〉 → 〈ζn mod q〉.

We now prove two more lemmas needed in the proof of Theorem 4.1. For each

ǫ ∈ Σne , define Aǫ(X) =
∑ne−1

−1
i=0 ǫiX

i ∈ Fq[X ]. We denote by · : Z[X ] →

Fq[X ], f(X) 7→ f(X) the reduction modulo q map. Recall that K = Q(ζn),
where ζn ∈ C is a primitive n-th root of unity. Note that OK = Z[ζn] is the ring

of integers of K. Denote by ·̂ : µn = 〈ζ
q−1

n 〉 → 〈ζn〉 the group homomorphism

defined by
̂
ζ

q−1

n = ζn, which is an isomorphism by Corollary 4.3. In fact,
the inverse map π−1 : 〈ζn mod q〉 → 〈ζn〉 is equal to ·̂ i for some i ∈ Z with

gcd(i, n) = 1. Let Âǫ(X) =
∑ne−1−1

i=0 ǫ̂iX
i ∈ OK [X ] be the characteristic zero

lift of Aǫ(X) via the isomorphism ·̂ : µn → 〈ζn〉.
Let us denote by Res(f, g) the resultant of two polynomials with coefficients

in a commutative ring R with unity. Note that Res(f, g) ∈ R.

3When n = 2, there is a canonical lift of µ2 = {±1} ⊂ Fq to Z, which works for all q.
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Lemma 4.4. For every ǫ ∈ Σne , we have Res(Âǫ,Φne) 6= 0.

Proof. If e = 1, then Âǫ(X) ∈ O×
K and the assertion holds. We may as-

sume e > 1. Suppose that Âǫ and Φne have a common root ζine (in Q), where
i ∈ {1, . . . , ne} with gcd(n, i) = 1. Note that [Q(ζn) : Q(ζine)] = [Q(ζn) :

Q]/[Q(ζine
) : Q] = φ(ne)/φ(n) = ne−1 > ne−1 − 1 = deg Âǫ(X). On the other

hand, the minimal polynomial of ζine over Q(ζn) must divide Âǫ, and so we

have [Q(ζine
) : Q(ζn)] ≤ deg Âǫ(X), which is a contradiction. �

Lemma 4.5. If q ∈ [e]−, then there exists ǫ = (ǫ0, . . . , ǫne−1−1) ∈ Σne such

that

Res(Aǫ,Φne) = 0 ∈ Fq.

Proof. For brevity we set w := ζ
q−1

ne . Then µne = {ζ
q−1

ne i | 1 ≤ i ≤ ne} =
{wi | 1 ≤ i ≤ ne}. Suppose that P (X) ∈ Fq[X ] represents n-th roots in
F×
q . Let R(X) ∈ Fq[X ] be the unique polynomial with degR(X) < ne−1 such

that P (X) = (Xne−1

− 1)H(X) +R(X) for some H(X) ∈ Fq[X ]. Then R(X)
represents n-th roots in µne :

R(win)n = (P (win)− (wine

− 1)H(win))n = P (win)n = win

for all i ∈ {1, . . . , ne−1}. For each i ∈ {0, . . . , ne−1 − 1}, if we set ǫi :=
R(win)/wi ∈ µn, then we have R(win) = ǫiw

i. By the Lagrange interpolation
formula (Theorem 2.1), we have

R(X) =

ne−1−1∑

i=0

ǫiw
i
ne−1−1∏

j=0,j 6=i

X − wjn

win − wjn

=

ne−1−1∑

i=0

ǫiw
iX

ne−1

− 1

X − win

win

ne−1

=
1

ne−1

ne−1−1∑

i=0

ne−1−1∑

j=0

ǫiw
i(1−nj)Xj

=
1

ne−1

ne−1−1∑

j=0

Aǫ(w
1−nj)Xj.

Since lenR(X) < ne−1, there exists j ∈ {0, . . . , ne−1−1} such that Aǫ(w
1−nj) =

0. Noting that Φne(w1−nj) = 0, we conclude that Res(Aǫ,Φne) = 0. �

Now we proceed to prove Theorem 4.1. Eventually, we will prove that
#[e]− ≤ #{q ⊳OK | q is prime and divides Πe}, where Πe is a nonzero ideal of
OK .
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Proof of Theorem 4.1. Define4 Πe := lcmǫ∈Σne (Res(Âǫ,Φne)) as an ideal ofOK

where (Res(Âǫ,Φne)) = Res(Âǫ,Φne)·OK is the principal ideal ofOK generated

by Res(Âǫ,Φne). Note that Πe is a nonzero ideal of OK by Lemma 4.4. Let
F := {q ⊳OK | q is prime and divides Πe}, which is a finite set.

Claim: If q ∈ [e]−, then q lies below some q ∈ F .
Let q ∈ [e]− be given. We need to prove that there exists a prime ideal

q of OK such that q | q and q | Πe. Namely, we need to show that (q) and
Πe are not coprime. It suffices to show that there exists a prime ideal q and

ǫ ∈ Σne such that q | q and q | Res(Âǫ,Φne). By Lemma 4.5, there exists
ǫ = (ǫ0, . . . , ǫne−1−1) ∈ Σne such that Res(Aǫ,Φne) = 0. By Corollary 4.3,

there exists ν = (ν0, . . . , νne−1−1) ∈ µn(K)n
e−1

such that ν̂j mod q = ǫj for

all j ∈ {0, . . . , ne−1 − 1}. Since Φne is monic, Res(Aǫ,Φne) = 0 implies that

Res(Âν ,Φne) + q = π(Res(Âν ,Φne)) = 0 = q ∈ OK/q.5 (Note that Âν + q =

Aν̂ + q = Aǫ.) In other words, Res(Âν ,Φne) ∈ q or q | Res(Âν ,Φne). Thus, we
have q ∈ F . Since precisely one prime can lie blow each prime ideal q ∈ F , we
have #[e]− ≤ #F < ∞. �

Remark 4.6. In the context of n-th roots for arbitrary n, Theorem 3.2 has rather
restricted applicability. To be able to guarantee existence of short representing
polynomials in all possible cases, more refined techniques seem to be needed.
We content ourself by noting that Theorem 3.2, combined with Theorem 4.1,
gives almost complete answer for the case n = 3 regarding the lower bound for
the length.
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