• Title/Summary/Keyword: Finite field GF(2$^{m}$ )

Search Result 95, Processing Time 0.024 seconds

A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs (최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. The finite field $GF(2^m)$ with type I optimal normal basis(ONB) has the disadvantage not applicable to some cryptography since m is even. The finite field $GF(2^m)$ with type II ONB, however, such as $GF(2^{233})$ are applicable to ECDSA recommended by NIST. In this paper, we propose a bit-parallel multiplier over $GF(2^m)$ having a type II ONB, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{2m})$. The time and area complexity of the proposed multiplier is the same as or partially better than the best known type II ONB bit-parallel multiplier.

Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m) (유한체상의 자원과 시간에 효율적인 다항식 곱셈기)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

Design of High-speed Digit Serial-Parallel Multiplier in Finite Field GF($2^m$) (Finite Field GF($2^m$)상의 Digit Serial-Parallel Multiplier 구현)

  • Choi, Won-Ho;Hong, Sung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.928-931
    • /
    • 2003
  • This paper presents a digit-serial/parallel multiplier for finite fields GF(2m). The hardware requirements of the implemented multiplier are less than those of the existing multiplier of the same class, while processing time and area complexity. The implemented multiplier possesses the features of regularity and modularity. Thus, it is well suited to VLSI implementation. If the implemented digit-serial multiplier chooses the digit size D appropriately, it can meet the throughput requirement of a certain application with minimum hardware. The multipliers and squarers analyzed in this paper can be used efficiently for crypto processor in Elliptic Curve Cryptosystem.

  • PDF

A Fast Method for Computing Multiplcative Inverses in GF(2$^{m}$ ) Using Normal Bases

  • 장용희;권용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • Cryptosystems have received very much attention in recent years as importance of information security is increased. Most of Cryptosystems are defined over finite or Galois fields GF($2^m$) . In particular, the finite field GF($2^m$) is mainly used in public-key cryptosystems. These cryptosystems are constructed over finite field arithmetics, such as addition, subtraction, multiplication, and multiplicative inversion defined over GF($2^m$) . Hence, to implement these cryptosystems efficiently, it is important to carry out these operations defined over GF($2^m$) fast. Among these operations, since multiplicative inversion is much more time-consuming than other operations, it has become the object of lots of investigation. Recently, many methods for computing multiplicative inverses at hi호 speed has been proposed. These methods are based on format's theorem, and reduce the number of required multiplication using normal bases over GF($2^m$) . The method proposed by Itoh and Tsujii[2] among these methods reduced the required number of times of multiplication to O( log m) Also, some methods which improved the Itoh and Tsujii's method were proposed, but these methods have some problems such as complicated decomposition processes. In practical applications, m is frequently selected as a power of 2. In this parer, we propose a fast method for computing multiplicative inverses in GF($2^m$) , where m = ($2^n$) . Our method requires fewer ultiplications than the Itoh and Tsujii's method, and the decomposition process is simpler than other proposed methods.

A Design and Comparison of Finite Field Multipliers over GF($2^m$) (GF($2^m$) 상의 유한체 승산기 설계 및 비교)

  • 김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.799-806
    • /
    • 1991
  • Utilizing dual basis, normal basis, and subfield representation, three different finite field multipliers are presented in this paper. First, we propose an extended dual basis multiplier based on Berlekamp's bit-serial multiplication algorithm. Second, a detailed explanation and design of the Massey-Omura multiplier based on a normal basis representation is described. Third, the multiplication algorithm over GF(($2^{n}$) utilizing subfield is proposed. Especially, three different multipliers are designed over the finite field GF(($2^{4}$) and the complexity of each multiplier is compared with that of others. As a result of comparison, we recognize that the extendd dual basis multiplier requires the smallest number of gates, whereas the subfield multiplier, due to its regularity, simplicity, and modularlity, is easier to implement than the others with respect to higher($m{\ge}8$) order and m/2 subfield order.

  • PDF

Efficient systolic VLSI architecture for division in $GF(2^m)$ ($GF(2^m)$ 상에서의 나눗셈연산을 위한 효율적인 시스톨릭 VLSI 구조)

  • Kim, Ju-Young;Park, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.35-42
    • /
    • 2007
  • The finite-field division can be applied to the elliptic curve cryptosystems. However, an efficient algorithm and the hardware design are required since the finite-field division takes much time to compute. In this paper, we propose a radix-4 systolic divider on $GF(2^m)$ with comparative area and performance. The algorithm of the proposed divide, is mathematically developed and new counter structure is proposed to map on low-cost systolic cells, so that the proposed systolic architecture is suitable for YLSI design. Compared to the bit-parallel, bit-serial and digit-serial dividers, the proposed divider has relatively effective high performance and low cost. We design and synthesis $GF(2^{193})$ finite-field divider using Dongbuanam $0.18{\mu}m$ standard cell library and the maximum clock frequency is 400MHz.

The Optimal Normal Elements for Massey-Omura Multiplier (Massey-Omura 승산기를 위한 최적 정규원소)

  • 김창규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.41-48
    • /
    • 2004
  • Finite field multiplication and division are important arithmetic operation in error-correcting codes and cryptosystems. The elements of the finite field GF($2^m$) are represented by bases with a primitive polynomial of degree m over GF(2). We can be easily realized for multiplication or computing multiplicative inverse in GF($2^m$) based on a normal basis representation. The number of product terms of logic function determines a complexity of the Messay-Omura multiplier. A normal basis exists for every finite field. It is not easy to find the optimal normal element for a given primitive polynomial. In this paper, the generating method of normal basis is investigated. The normal bases whose product terms are less than other bases for multiplication in GF($2^m$) are found. For each primitive polynomial, a list of normal elements and number of product terms are presented.

Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)) (GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기)

  • Kim, Tai Wan;Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.

Optimization Techniques for Finite field Operations at Algorithm Levels (알고리즘 레벨 유한체 연산에 대한 최적화 연구)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.651-654
    • /
    • 2008
  • In finite field operations based on $GF(2^m)$, additions and subtractions are easily implemented. On the other hand, multiplications and divisions require mathematical elaboration of complex equations. There are two dominant way of approaching the solutions of finite filed operations, normal basis approach and polynomial basis approach, each of which has both benefits and weakness respectively. In this study, we adopted the mathematically feasible polynomial basis approach and suggest the optimization techniques of finite field operations based of mathematical principles.

  • PDF

A Fast Inversion for Low-Complexity System over GF(2 $^{m}$) (경량화 시스템에 적합한 유한체 $GF(2^m)$에서의 고속 역원기)

  • Kim, So-Sun;Chang, Nam-Su;Kim, Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.51-60
    • /
    • 2005
  • The design of efficient cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. Especially, among the basic arithmetic over finite field, the rnultiplicative inversion is the most time consuming operation. In this paper, a fast inversion algerian in finite field $GF(2^m)$ with the standard basis representation is proposed. It is based on the Extended binary gcd algorithm (EBGA). The proposed algorithm executes about $18.8\%\;or\;45.9\%$ less iterations than EBGA or Montgomery inverse algorithm (MIA), respectively. In practical applications where the dimension of the field is large or may vary, systolic array sDucture becomes area-complexity and time-complexity costly or even impractical in previous algorithms. It is not suitable for low-weight and low-power systems, i.e., smartcard, the mobile phone. In this paper, we propose a new hardware architecture to apply an area-efficient and a synchronized inverter on low-complexity systems. It requires the number of addition and reduction operation less than previous architectures for computing the inverses in $GF(2^m)$ furthermore, the proposed inversion is applied over either prime or binary extension fields, more specially $GF(2^m)$ and GF(P) .