• 제목/요약/키워드: Finite element elastic-plastic analysis

검색결과 467건 처리시간 0.021초

박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구 (A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis)

  • 정동원;양경부
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석 (Determination of Elastic Recovery for Axi-Symmetric Forged Products)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

Precise dynamic finite element elastic-plastic seismic analysis considering welds for nuclear power plants

  • Kim, Jong-Sung;Jang, Hyun-Su
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2550-2563
    • /
    • 2022
  • This study performed a precise dynamic finite element time history elastic-plastic seismic analysis considering the welds, which have been not considered in design stage, on the nuclear components subjected to severe seismic loadings such as beyond-design basis earthquakes for sustainable nuclear power plants. First, the dynamic finite element elastic-plastic seismic analysis was performed for a general design practice that does not take into account the welds of the pressurizer surge line system, one of safety class I components in nuclear power plants, and then the reference values for the accumulated equivalent plastic strain, equivalent plastic strain, and von Mises effective stress were set. Second, the dynamic finite element elastic-plastic seismic analyses were performed for the case of considering only the mechanical strength over-mismatch of the welds as well as for the case of considering both the strength over-mismatch and welding residual strain. Third, the effects of the strength over-mismatch and welding residual strain were analyzed by comparing the finite element analysis results with the reference values. As a result of the comparison, it was found that not considering the strength over-mismatch may lead to conservative assessment results, whereas not considering the welding residual strain may be non-conservative.

고강도강 자동차 부품의 롤 성형 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of the Roll Forming Process for an Automotive Part of High Strength Steel)

  • 김광희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.480-483
    • /
    • 2005
  • A roll forming process is developed for an automotive part of high strength steel. Forming rolls are designed through the plane strain elastic-plastic finite element analysis to estimate the springback. It is assumed that the process can be approximated as a series of multi-step bending processes. Then the 3D elastic-plastic finite element analysis with the solid element is carried out for the designed roll forming process. The prototype roll forming machine and the forming rolls are made and the experiments are carried out. The results of the analysis and the experiments are compared.

  • PDF

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구 (Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components)

  • 김종성;박상혁
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가 (Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure)

  • 강지웅;김상태;권오헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF

대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석 (Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process)

  • 정동원;김귀식;양동열
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석 (Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method)

  • 박재학;박상윤
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.