• Title/Summary/Keyword: Finite delay

Search Result 231, Processing Time 0.024 seconds

Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m) (유한체상의 자원과 시간에 효율적인 다항식 곱셈기)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

Global Finite-Time Convergence of TCP Vegas without Feedback Information Delay

  • Choi, Joon-Young;Koo Kyung-Mo;Lee, Jin S.;Low Steven H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • We prove that TCP Vegas globally converges to its equilibrium point in finite time assuming no feedback information delay. We analyze a continuous-time TCP Vegas model with discontinuity and high nonlinearity. Using the upper right-hand derivative and applying the comparison lemma, we cope with the discontinuous signum function in the TCP Vegas model; using a change of state variables, we deal with the high nonlinearity. Although we ignore feedback information delay in analyzing the model of TCP Vegas, the simulation results illustrate that TCP Vegas in the presence of feedback information delay shows very similar dynamic trends to TCP Vegas without feedback information delay. Consequently, dynamic properties of TCP Vegas without feedback information delay can be used to estimate those of TCP Vegas in the presence of feedback information delay.

FINITE DIFFERENCE SCHEME FOR SINGULARLY PERTURBED SYSTEM OF DELAY DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • SEKAR, E.;TAMILSELVAN, A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.201-215
    • /
    • 2018
  • In this paper we consider a class of singularly perturbed system of delay differential equations of convection diffusion type with integral boundary conditions. A finite difference scheme on an appropriate piecewise Shishkin type mesh is suggested to solve the problem. We prove that the method is of almost first order convergent. An error estimate is derived in the discrete maximum norm. Numerical experiments support our theoretical results.

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Combined Finite-buffered Ferry and Mobile Nodes Message-carrying for DTNs (DTN에서 유한 버퍼의 페리와 이동노드의 메시지 전달)

  • Kim, Byung-Soon;Lee, Bong-Kyoo
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.115-120
    • /
    • 2009
  • In traditional message ferrying schemes, only message ferries carry messages between partitioned networks. In this paper, we propose a new approach to make both finite-buffered c ferries and mobile nodes carry messages so that we reduce message delivery delay and increase throughput in delay tolerant networks. We evaluate our scheme against conventional message ferrying in terms of message delivery delay and throughput.

  • PDF

Hankel approximation of commensurate input delay systems (복수 입력 시간지연 시스템의 한켈 근사화)

  • 황이철;태전쾌인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1452-1455
    • /
    • 1997
  • This paper studies the problem of approximating commensurate input delay sustems by finite dimensional systems based on the Hankel singular values. I is shown that the Gankel singular values are solutions a trancendental equation and the Hankel singular vectors are obtained form the kernel of the matrix. The computaioin is carried out in state spae framework. Once singular values and vectors are calcualted, finite dimensional approximated systems are constructed using stadnard linear system computational tools. An example is included.

  • PDF

EXISTENCE OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STEPANOV FORCING TERMS.

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.351-363
    • /
    • 2020
  • We introduce a new concept of Stepanov weighted pseudo almost periodic functions of class r which have been established by recently in [20]. Furthermore, we study the uniqueness and existence of Stepanov weighted pseudo almost periodic mild solutions of partial neutral functional differential equations having the Stepanov pseudo almost periodic forcing terms on finite delay.

Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System (3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.