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ABSTRACT. In this paper we consider a class of singularly perturbed system of delay differen-
tial equations of convection diffusion type with integral boundary conditions. A finite difference
scheme on an appropriate piecewise Shishkin type mesh is suggested to solve the problem. We
prove that the method is of almost first order convergent. An error estimate is derived in the
discrete maximum norm. Numerical experiments support our theoretical results.

1. INTRODUCTION

In natural or technological control problems, a controller monitors the state of the system,
and makes adjustments to the system based on its observations. Since these adjustments can
never be made instantaneously, a delay arises between the observation and the control action.
This kind of systems are governed by differential equations with delay arguments. A sub-
class of these equations consists of singularly perturbed differential equations with delay are
typically characterized by the presence of small positive parameter ε multiplying some or all
of the highest derivatives present in the differential equation. These equations arise in math-
ematical models of biological science and engineering. Differential equations with integral
boundary conditions have plenty of applications. A Parabolic equation with nonlocal bound-
ary conditions arising from electro chemistry is well studied by Choi and Chan [7]. In [8],
Day have discussed Parabolic equations and thermodynamics. Cannon [6] have worked for
the solution of the heat equation subject to the specification of energy, etc. The authors of
[4, 9, 14] have proved that the problem of differential equations with integral boundary condi-
tions is well posed. The authors of [1, 5, 16, 20, 21] have developed various numerical schemes
on uniform meshes for singularly perturbed first and second order differential equations with
integral boundary conditions. The standard numerical methods used for solving singularly per-
turbed differential equation are some time ill posed and fail to give analytical solution when
the perturbation parameter ε is small. Therefore, it is necessary to improve suitable numerical
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methods which are uniformly convergent to solve this type of differential equations. Many
authors have worked on singularly perturbed differential equations with small and large de-
lay using uniformly convergent numerical methods. In [13], Lange and Miura have discussed
singularly perturbed linear second order differential-difference equations with small delay. In
[10, 11, 12, 17, 18, 19] finite difference and finite element methods are proposed to solve these
kind of equations with large and small shifts.

In the present paper, motivated by the works of [1, 2, 3], we analyze a fitted finite difference
scheme on a piecewise uniform mesh for the numerical solution of a class of second order
singularly perturbed system of delay differential equations with integral boundary conditions.
The present paper is arranged as follows. Statement of the problem is given in section 2. In
section 3, maximum principle, stability result and appropriate bounds for the derivatives of
the solution of the problem are presented. Section 4 describes the numerical method. Error
analysis for approximate solution is given section 5. Numerical results are given in section
6. Section 7 includes the conclusion part. Throughout our analysis we use the following
notations: Ω̄ = [0, 2], Ω = (0, 2), Ω1 = (0, 1), Ω2 = (1, 2), Ω∗ = Ω1 ∪ Ω2. Ω̄2N =
{0, 1, 2, ..., 2N}, Ω2N

1 = {1, 2, ..., N − 1}, Ω2N
2 = {N + 1, ..., 2N − 1}. C, C1 are generic

positive constants that are independent of parameter ε and 2N mesh points. We assume that
ε ≤ CN−1. The supremum norm used for studying the convergence of the numerical solution
to the exact solution of a singular perturbation problem is ∥u∥Ω = supx∈Ω |u(x)|.

2. STATEMENT OF THE PROBLEM

Find ū = (u1, u2)
T , u1, u2 ∈ Y = C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2) such that

−εu′′1(x) + a1(x)u
′
1(x) + b11(x)u1(x) + b12(x)u2(x) + c11(x)u1(x− 1)

+c12(x)u2(x− 1) = f1(x), x ∈ Ω1 ∪ Ω2,

−εu′′2(x) + a2(x)u
′
2(x) + b21(x)u1(x) + b22(x)u2(x) + c21(x)u1(x− 1)

+c22(x)u2(x− 1) = f2(x), x ∈ Ω1 ∪ Ω2,

u1(x) = ϕ1(x), x ∈ [−1, 0], K1u1(2) = u1(2)− ε
∫ 2
0 g1(x)u1(x)dx = l1,

u2(x) = ϕ2(x), x ∈ [−1, 0], K2u2(2) = u2(2)− ε
∫ 2
0 g2(x)u2(x)dx = l2.

(2.1)

where 0 < ε << 1 is a small positive parameter, the functions a1(x), a2(x), b11(x), b12(x), b21(x),
b22(x), c11(x), c12(x), c21(x), c22(x), f1(x), f2(x) are sufficiently smooth on Ω̄ = [0, 2] and
satisfy the following assumptions.

a1(x) ≥ α1 > 0, a2(x) ≥ α2 > 0, 0 < α < min{α1, α2}, x ∈ Ω̄

b11(x) ≥ 0, b12(x) ≤ 0, b21(x) ≤ 0, b22(x) ≥ 0,

b11(x) + b12(x) ≥ β1 ≥ 0, b21(x) + b22(x) ≥ β2 ≥ 0,

c11(x) ≤ 0, c12(x) ≤ 0, c21(x) ≤ 0, c22(x) ≥ 0,

c11(x) + c12(x) ≥ γ1 ≥ 0, c21(x) + c22(x) ≥ γ2 ≥ 0,

gi are nonnegative and 1−
∫ 2
0 gi(x)dx > 0, i = 1, 2.
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The problem (2.1) can be rewritten as,

L1ū(x) : =


−εu′′1(x) + a1(x)u

′
1(x) + b11(x)u1(x) + b12(x)u2(x)

= f1(x)− c11(x)ϕ1(x− 1)− c12(x)ϕ2(x− 1), x ∈ Ω1,

−εu′′1(x) + a1(x)u
′
1(x) + b11(x)u1(x) + b12(x)u2(x) + c11(x)u1(x− 1)

+c12(x)u2(x− 1) = f1(x), x ∈ Ω2,
(2.2)

L2ū(x) : =


−εu′′2(x) + a2(x)u

′
2(x) + b21(x)u1(x) + b22(x)u2(x)

= f2(x)− c21(x)ϕ1(x− 1)− c22(x)ϕ2(x− 1), x ∈ Ω1,

−εu′′2(x) + a2(x)u
′
2(x) + b21(x)u1(x) + b22(x)u2(x) + c21(x)u1(x− 1)

+c22(x)u2(x− 1) = f2(x), x ∈ Ω2,
(2.3)

u1(0) = ϕ1(0), u1(1−) = u1(1+), u′1(1−) = u′1(1+),

K1u1(2) = u1(2)− ε
∫ 2
0 g1(x)u1(x)dx = l1,

u2(0) = ϕ2(0), u2(1−) = u2(1+), u′2(1−) = u′2(1+),

K2u2(2) = u2(2)− ε
∫ 2
0 g2(x)u2(x)dx = l2,

(2.4)

3. THE CONTINUOUS PROBLEM

Theorem 3.1. (Maximum Principle) Let w̄ = (w1, w2)
T , w1, w2 ∈ C0(Ω̄) ∩ C2(Ω1 ∪ Ω2)

be any function satisfying wi(0) ≥ 0, i = 1, 2, Kiwi(2) ≥ 0, i = 1, 2, Liw̄(x) ≥ 0, ∀x ∈
Ω1 ∪ Ω2, i = 1, 2 and w′

i(1+) − w′
i(1−) = [w′

i](1) ≤ 0, i = 1, 2. Then wi(x) ≥ 0, ∀x ∈
Ω̄, i = 1, 2.

Proof. Let s̄ = (s1, s2)
T be a function defined by

si(x) =

{
1
8 + x

2 , x ∈ [0, 1]
3
8 + x

4 , x ∈ [1, 2].
i = 1, 2. (3.1)

It is easy to see that, si(x) > 0, ∀x ∈ Ω̄, i = 1, 2, Lis̄i(x) > 0, ∀x ∈ Ω1 ∪ Ω2, i = 1, 2 and
[s′i](1) < 0, i = 1, 2. Let

µ = max
{
max
Ω̄

{−w1(x)

s1(x)
}, max

Ω̄
{−w2(x)

s2(x)
}
}
.

Then there exists at least one point x0 ∈ Ω̄ such that w1(x0) + µs1(x0) = 0 or w2(x0) +
µs2(x0) = 0 or both and wi(x) + µsi(x) ≥ 0, ∀x ∈ Ω̄, i = 1, 2. With out loss of generality
we assume that w1(x0)+µs1(x0) = 0. Therefore the function (w1+µs1) attains its minimum
at x = x0. Suppose the theorem does not hold true, then µ > 0.
Case(i) : x0 ∈ Ω1

0 < L1(w̄ + µs̄)(x0) =− ε(w1 + µs1)
′′(x0) + a1(x0)(w1 + µs1)

′(x0)

+ b11(x0)(w1 + µs1)(x0) + b12(x0)(w2 + µs2)(x0) ≤ 0.
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Case (ii): x0 = 1

0 ≤ [(w̄ + µs̄)′](1) = [w̄′](1) + µ[s̄′](1) < 0

Case(iii) : x0 ∈ Ω2

0 < L1(w̄ + µs̄)(x0) = −ε(w1 + µs1)
′′(x0) + a1(x0)(w1 + µs1)

′(x0)

+ b11(x0)(w1 + µs1)(x0) + b12(x0)(w2 + µs2)(x0)

+ c11(x0)(w1 + µs1)(x0 − 1) + c12(x0)(w2 + µs2)(x0 − 1) ≤ 0.

Case (iv): x0 = 2

0 < K1(w̄ + µs̄)(2) = (w1 + µs1)(2)− ε

∫ 2

0
g1(x)(w1 + µs1)(x)dx ≤ 0.

Observe that in all the four cases we arrived a contradiction. Therefore µ > 0 is not possible.
This shows that w1(x) ≥ 0. Similarly w2(x) ≥ 0. �

Corollary 3.2. (Stability Result) Let ū = (u1, u2)
T , u1, u2 ∈ Y be any function. Then,

| ui(x) |≤ C max
{
max
j=1,2

{| uj(0) |}, max
j=1,2

{| Kjuj(2) |}, max
j=1,2

{ sup
x∈Ω1∪Ω2

| Lj ū(x) |}
}
,

∀ x ∈ Ω̄, i = 1, 2.

Proof. Define ψ̄±(x) = (ψ±
1 (x), ψ

±
2 (x))

T , x ∈ Ω̄, where

ψ±
i (x) = CMsi(x)± ui(x), x ∈ Ω̄, i = 1, 2,

M = max{max
j=1,2

{| uj(0) |}, max
j=1,2

{| Kjuj(2) |}, max
j=1,2

{ sup
x∈Ω1∪Ω2

| Lj ū(x) |}}

and s̄ is defined by (3.1). Using the above barrier functions ψ±(x) and Theorem 3.1, this
corollary can be proved easily. �

Bounds for the derivatives of ū(x) are given in the following lemma.

Lemma 3.3. Let ū(x) be the solution of (1). Then, for 1 ≤ k ≤ 3,

|u(k)j (x)| ≤ Cε−k, j = 1, 2.

Proof. Using Corollary 3.2 and applying arguments as given in [15] this lemma gets proved.
�

The uniform error estimates can be derived using the sharper bounds on the derivatives of
the solution ū(x). To get sharper bounds we write the analytical solution ū(x) in the form
ū(x) = v̄(x) + w̄(x), where v̄(x) = (v1(x), v2(x))

T and w̄(x) = (w1(x), w2(x))
T . The
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regular component v̄(x) can be written as v̄(x) = v̄0(x) + εv̄1(x) + ε2v̄2(x), where v̄0 =
(v01, v02)

T , v̄1 = (v11, v12)
T and v̄2 = (v21, v22)

T satisfy the following equations:

a1(x)v
′
01(x) + b11(x)v01(x) + b12(x)v02(x) + c11(x)v01(x− 1)

+c12(x)v02(x− 1) = f1(x),

a2(x)v
′
02(x) + b21(x)v01(x) + b22(x)v02(x) + c21(x)v01(x− 1)

+c22(x)v02(x− 1) = f2(x),

v01(x) = u1(x), v02(x) = u2(x), x ∈ [−1, 0]

(3.2)



a1(x)v
′
11(x) + b11(x)v11(x) + b12(x)v12(x) + c11(x)v11(x− 1)

+c12(x)v12(x− 1) = f1(x),

a2(x)v
′
12(x) + b21(x)v11(x) + b22(x)v12(x) + c21(x)v11(x− 1)

+c22(x)v12(x− 1) = f2(x),

v11(x) = u1(x), v12(x) = u2(x), x ∈ [−1, 0]

(3.3)

{
L1v2(x) = v′′11(x), v21(x) = 0, x ∈ [−1, 0], K1v21(2) = 0,

L2v2(x) = v′′12(x), v22(x) = 0, x ∈ [−1, 0], K2v22(2) = 0.
(3.4)

Thus the regular component v̄(x) is the solution of

L1v(x) = f1(x), v1(x) = u1(x), x ∈ [−1, 0],

K1v1(2) = K1v01(2) + εK1v11(2) + ε2K1v21(2).

L2v(x) = f2(x), v2(x) = u2(x), x ∈ [−1, 0],

K2v2(2) = K2v02(2) + εK2v12(2) + ε2K2v22(2).

v̄(1) = v̄0(1) + εv̄1(1) + ε2v̄2(1).

(3.5)

and w̄(x) is the solution of
L1w1(x) = 0, w1(x) = 0, x ∈ [−1, 0], K1w1(2) = K1u1(2)−K1v1(2).

L2w2(x) = 0, w2(x) = 0, x ∈ [−1, 0], K2w2(2) = K2u2(2)−K2v2(2).

[w̄′](1) = −[v̄′](1)

(3.6)

We further decompose w̄(x) as w̄(x) = w̄B(x)+w̄I(x),where the function w̄B(x) is boundary
layer component and w̄I(x) is interior layer component, which are the solution of the following
problems respectively:
Find w̄B(x) ∈ X such that{

L1wB1(x) = 0, wB1(x) = 0, x ∈ [−1, 0], K1wB1(2) = K1u1(2)−K1v1(2).

L2wB2(x) = 0, wB2(x) = 0, x ∈ [−1, 0], K2wB2(2) = K2u2(2)−K2v2(2).
(3.7)
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Find wI(x) ∈ C0(Ω) ∩ C2(Ω∗) such that{
L1wI1(x) = 0, w1I(x) = 0, x ∈ [−1, 0], [w′

I1](1) = −[v′](1), KwI1(2) = 0.

L2wI2(x) = 0, wI2(x) = 0, x ∈ [−1, 0], [w′
I2](1) = −[v′](1), KwI2(2) = 0.

(3.8)

Theorem 3.4. Let ū(x) be the solution of the problem (1) and v̄0(x) be its reduced problem
solution defined in (6). Then

|uj(x)− v0j(x)| ≤ C(ε+ e−α(2−x)/ε), x ∈ Ω̄, j = 1, 2.

Proof. Consider the barrier functions ψ̄±(x) = (ψ±
1 (x), ψ

±
2 (x))

T , where

ψ±
j (x) = C(εsj(x) + e−α(2−x)/ε)± (uj(x)− v0j(x)), x ∈ Ω̄ j = 1, 2.

Note that ψ±
j (x) ∈ C0(Ω̄) ∩ C2(Ω). It is easy to see that, ψ±

1 (0) ≥ 0 for a suitable choice
of C > 0. Further

K1ψ
±
1 (2) = ψ±

1 (2)− ε

∫ 2

0
g1(x)ψ

±
1 (x)dx

≥ C(2ε+ 1)− 2Cε

∫ 2

0
g1(x)dx− Cε

∫ 2

0
g1(x)dx±K1(u1 − v01)(2) ≥ 0

for a suitable choice of C > 0.
Let x ∈ (0, 1). Then

L1ψ̄
±(x) = Cε[a1(x)s

′
1(x) + b11(x)s1(x) + b12(x)s2(x)]

+C[
α

ε
(a1(x)− α) + b11(x) + b12(x)]e

−α(1−x)/ε

±L1(ū− v̄01)(x) ≥ 0,

by a proper choice of C > 0. Let x ∈ Ω2. Then

L1ψ̄
±(x) = C

[(α
ε
(a1(x)− α) + b11(x)s1(x) + b12(x)s2(x) + (c11(x)s1(x) + c12(x)s2(x))

exp(−α
ε
)
)
exp(

−α(2− x)

ε
) + ε(a1(x) + b11(x)s1(x) + b12(x)s2(x)

+ (c11(x)s1(x− 1) + c12(x)s2(x− 1))

]
± εv′′0(x),

≥ 0.

for a suitable choice of C > 0.
Similarly one can prove that L2ψ̄

±(x) ≥ 0 and K2ψ
±
2 (2) ≥ 0. Then by maximum principle

we have ψ±
i (x) ≥ 0, x ∈ Ω̄, i = 1, 2. �

Lemma 3.5. The regular component v̄(x) and the singular component w̄(x) of the solution
ū(x) satisfy the following bounds.

∥vkj (x)∥Ω∗ ≤ C(1 + ε2−k), for k = 0, 1, 2, 3 (3.9)
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|wk
Bj(x)| ≤ Cε−k exp(

−α(2− x)

ε
), x ∈ Ω∗, k = 0, 1, 2, 3 (3.10)

|wk
Ij(x)| ≤ C

{
ε1−k exp(−α(1−x)

ε ), x ∈ Ω1,

ε1−k, x ∈ Ω2,
k = 0, 1, 2, 3, (3.11)

where j = 1, 2

Proof. Integrating (3.2) and (3.4) and using the stability result, the inequalities (3.9) can be
proved easily. To prove the inequalities (3.11), consider the barrier functions

Φ±
j (x) = C1(exp(

−α(2− x)

ε
))± wBj(x), x ∈ Ω̄. j = 1, 2

It is easy to see that Φ±
1 (0) ≥ 0.

Further,

K1Φ
±
1 (2) = Φ±

1 (2)− ε

∫ 2

0
g1(x)Φ

±
1 (x)dx

= C[1− ε

∫ 2

0
g1(x) exp(

−α(2− x)

ε
)dx]±K1wB1(2)

≥ 0

Also

LΦ±(x) = C1

[
α

ε
(a1(x)− α) + b11(x) + b12(x) + (c11(x) + c12(x)) exp(−

α

ε
)

]
exp(

−α(2− x)

ε
)± LwB1(x)

≥ C1

[
α

ε
(α1 − α) + β + γ exp(−α

ε
)

]
exp(

−α(2− x)

ε
)± 0

≥ 0.

By the Theorem 3.1,
|wB1(x)| ≤ C exp(−α(2− x)/ε).

Integration of (3.7) yields the estimates of |w′
B1(x)|. From the differential equations (3.6),

one can derive the rest of the derivative estimates (3.11). Similarly it is easy to prove wB2 is
bounded. To prove the inequalities (3.11), consider the barrier functions

Φ±
j (x) = C1ε(exp(−α(1− x)/ε))± wIj(x), x ∈ [0, 1], j = 1, 2.

Clearly, Φ±(0) ≥ 0 and also LjΦ(xi) ≥ 0, j = 1, 2 easily proves the first inequality.
Similarly, consider the following barrier functions

Φ±
j (x) = C1xε± wIj(x), x ∈ [1, 2].

Note that

KjΦ
±(2) = Φ±

j (2)− ε

∫ 2

0
gj(x)Φ

±
j (x)dx
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= Cε[2− ε

∫ 2

0
xgj(x)dx]±KjwIj(2)

= 2Cε[1− ε

∫ 2

0
gj(x)dx]± 0

≥ 0

LjΦ
±
j (x) = −ε(Φ±

j )
′′(x) + a(x)(Φ±

j )
′ + b(x)Φ±

j (x) + c(x)Φ±
j (x− 1) ≥ 0

Hence the proof. �
Note: From the above lemma, it is not difficult to prove

|uj(x)− vj(x)| ≤ C

{
ε exp(−α(1−x)

ε ) + exp(−α(2−x)
ε ), x ∈ Ω1

ε+ exp(−α(2−x)
ε ), x ∈ Ω2.

wherej = 1, 2. (3.12)

4. THE DISCRETE PROBLEM

The BVP (2.1) exhibits strong boundary layer at x = 2 and interior layer at x = 1.
The interval [0, 1] is partitioned into [0, 1 − σ] and [1 − σ, 1] and the interval [1, 2] is parti-

tioned as [1, 2− σ] and [2− σ, 2], where σ is transition parameter for this mesh defined by

σ = min{1
2
, 2
ε

α
lnN}.

The mesh Ω̄2N = {x0, x1, · · · · · · , x2N} is defined by
x0 = 0, xi = x0 + iH, i = 1 to N

2 , xi+N
2

= xN
2
+ ih, i = 1 to N

2 , xi+N =

xN + iH, i = 1 to N
2 , xi+ 3N

2
= x 3N

2
+ ih, i = 1 to N

2 where h = 2σ
N , H = 2(1−σ)

N .

The discrete problem corresponding to (2.2)-(2.4) is: Find Ū(xi) = (U1(x1), U2(x2))
T

such that
LN
1 Ū(xi) = −εδ2U1(xi) + a1(xi)D

−U1(xi) + b11(xi)U1(xi)

+b12(xi)U2(xi) + c11(xi)U1(xi−N ) + c12(xi)U2(xi−N ) = f1(xi), ∀xi ∈ Ω2N

LN
2 Ū(xi) = −εδ2U2(xi) + a2(xi)D

−U2(xi) + b21(xi)U1(xi)

+b22(xi)U2(xi) + c21(xi)U1(xi−N ) + c22(xi)U2(xi−N ) = f2(xi), ∀xi ∈ Ω2N .

(4.1)


Uj(xi) = ϕj(xi), i = −N,−N + 1, ..., 0,

KN
j Uj(xN ) = Uj(xN )− ε

2N∑
i=1

gj(xi−1)Uj(xi−1)+gj(xi)Uj(xi)
2 hi = lj , ∀xi ∈ Ω2N

D−Uj(xN ) = D+Uj(xN ),

(4.2)

where

δ2Uj(xi) =
2

hi+1 + hi

(
Uj(xi+1)− Uj(xi)

hi+1
− Uj(xi)− Uj(xi−1)

hi

)
,

D−Uj(xi) =
Uj(xi)− Uj(xi−1)

hi−1
, j = 1, 2
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Theorem 4.1. (Discrete Maximum Principle) Let Ψ̄(xi) = (Ψ1(xi),Ψ2(xi))
T be the mesh

function satisfying Ψ1(x0) ≥ 0,Ψ2(x0) ≥ 0,KN
1 Ψ1(x2N ) ≥ 0,KN

2 Ψ2(x2N ) ≥ 0,LN
1 Ψ̄(xi) ≥

0, LN
2 Ψ̄(xi) ≥ 0 and [D]Uj(xN )) ≤ 0, j = 1, 2. Then Ψ̄(xi) ≥ 0, xi ∈ Ω̄2N .

Proof. Define S̄j(xi) = (S1(xi), S2(xi))
T ,

Sj(xi) =

{
1
8 + xi

2 , xi ∈ [0, 1] ∩ Ω̄2N ,
3
8 + xi

4 , xi ∈ [1, 2] ∩ Ω̄2N ,
j = 1, 2.

Note that S̄j(xi) > 0, ∀xi ∈ Ω̄2N , KN
1 S1(x2N ) > 0,KN

2 S2(x2N ) > 0,LN
1 S̄1(xi) > 0 and

LN S̄2(xi) > 0, ∀xi ∈ Ω2N . Let

µ = max

{
max

xi∈Ω̄2N

(
−Ψ1(xi)

S1(xi)

)
, max
xi∈Ω̄2N

(
−Ψ2(xi)

S2(xi)

)}
.

Then there exists one xk ∈ Ω̄2N such that Ψ1(xk) + µS1(xk) = 0 or Ψ2(xk) + µS2(xk) = 0
or both. We have Ψj(xi) + µSj(xi) ≥ 0, xi ∈ Ω̄2N , j = 1, 2. Therefore either (Ψ1 + µS1) or
(Ψ2 +µS2) attains minimum at xi = xk. Suppose the theorem does not hold true, then µ > 0.
Case (i): xk = x0

0 < (Ψj + µSj)(x0) = 0

It is a contradiction.
Case (ii): xk ∈ Ω2N

1

0 < LN
j (Ψj + µSj)(xk) ≤ 0, j = 1, 2.

It is a contradiction.
Case (iii): xk = xN

0 ≤ [Dj(Ψj + µSj)](xN ) < 0, j = 1, 2.

It is a contradiction.
Case (iv): xk ∈ Ω2N

2

0 < LN
j (Ψj + µSj)(xk) ≤ 0, j = 1, 2.

It is a contradiction.
Case (v): xk = x2N

0 < KN
j (Ψj + µSj)x2N ≤ 0, j = 1, 2

It is a contradiction. Hence the proof of the theorem. �
Lemma 4.2. (Discrete Stability Result) Let Ū(xi) = (U1(xi), U2(xi))

T be any mesh function.
Then

| Uk(x) |≤ C max
{
max
j=1,2

{| Uj(0) |}, max
j=1,2

{| KjUj(2) |}, max
j=1,2

{ sup
xi∈Ω1∪Ω2

| LjŪ(xi) |}
}
,

∀ xi ∈ Ω̄2N , k = 1, 2.

Proof. By choosing suitable barrier functions and using Theorem 4.1, one can establish the
above inequality. �
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Analogous to the continuous case, the discrete solution Ū(xi) can be decomposed as

Ū(xi) = V̄ (xi) + W̄ (xi),

where V̄ (xi) and W̄ (xi) are respectively, the solutions of the problems:

LN
1 V1(xi) = f1(xi), xi ∈ Ω2N , V1(x0) = v1(0),

[D]V1(xN ) = [v′1](1), KN
1 V1(x2N ) = K1v1(2)

LN
2 V2(xi) = f2(xi), xi ∈ Ω2N , V2(x0) = v2(0),

[D]V2(xN ) = [v′2](1), KN
2 V2(x2N ) = K2v2(2).

[D]V̄ (xN ) = [v̄′](1)

(4.3)



LN
1 W1 = 0, xi ∈ Ω2N

ϵ , W1(x0) = w1(0),

[D]W1(xN ) = −[D]V1(xN ), KN
1 W1(x2N ) = K1w1(2)

LN
2 W2 = 0, xi ∈ Ω2N

ϵ , W2(x0) = w2(0),

[D]W2(xN ) = −[D]V2(xN ), KN
2 W2(x2N ) = K1w1(2).

[D]W̄ (xN ) = −[D]V̄ (xN )

(4.4)

The following theorem gives an estimate for the difference of the solutions of (4.1)− (4.2)
and (4.3).

Theorem 4.3. Let Ū(xi) be a numerical solution of (2.2)− (2.4) defined by (4.1)− (4.2) and
V̄ (xi) be a numerical solution of (3.5) defined by (4.3). Then

|Ūj(xi)− V̄j(xi)| ≤ C

{
N−1, i = 0, 1, · · · , 3N2
N−1 + |lj −KN

j Vj(X2N )| i = 3N
2 + 1, · · · , 2N.

j = 1, 2.

Proof. Consider a mesh function Ψ̄±(xi) = (Ψ±
1 (xi),Ψ

±
2 (xi))

T , where

Ψ±
j (xi) = CN−1Sj(xi) + Cxiφ(xi)± (Uj(xi)− Vj(xi)), xi ∈ Ω̄2N ,

φ(xi) =

{
0, i = 0, 1, · · · , 3N2
|lj −KN

j Vj(X2N )| i = 3N
2 + 1, · · · , 2N

j = 1, 2.

It is clear that Ψ±(x0) ≥ 0 and KΨ±(x2N ) ≥ 0.
If ∀ xi ∈ Ω2N

1

LN
j Φ±(xi) ≥ 0, j = 1, 2

If ∀ xi ∈ Ω2N
2

LN
j Ψ±(xi) ≥ 0, j = 1, 2 and

[D]+Ψ±
j (xN ) < 0, j=1,2, for a suitable choice of C1 > 0. By Theorem 4.1, this theorem gets

proved. �
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5. ERROR ESTIMATES FOR THE SOLUTION

We obtain separate error estimates for each component of the numerical solution.

Theorem 5.1. Let V̄ (xi) be a numerical solution of (3.5) defined by (4.3). Then

|vj(xi)− Vj(xi)| ≤ CN−1, xi ∈ Ω̄2N , where j = 1, 2.

Proof. If xi ∈ Ω2N
1 and xi ∈ Ω2N

2 then by [15], we have

|LN (vj(xi)− Vj(xi))| ≤ CN−1, i ∈ Ω2N
1 ∪ Ω2N

2 .

By the Lemma 4.2, we have

|vj(xi)− Vj(xi)| ≤ CN−1, i ∈ Ω2N
1 ∪ Ω2N

2 .

At the point xi = x2N ,

KN
j (Vj − vj)(x2N ) = KN

j Vj(x2N )−KN
j vj(x2N )

= l −KN
j vj(x2N )

= Kjvj(x2N )−KN
j vj(x2N )

= vj(x2N )−
∫ x2N

x0

gj(x)v(x)dx− vj(x2N ) +

2N∑
i=1

gi−1vi−1 + givi
2

hi

|KN
j (Vj − vj)(x2N )| ≤ Cε((h31v

′′(χ1) + · · ·+ h32Nv
′′(χ2N ))

≤ Cε(h31 + · · ·+ h32N )

≤ CN−2

≤ CN−1, where xi−1 ≤ χi ≤ xi, j = 1, 2, 1 ≤ i ≤ 2N.

Applying Lemma 4.2, we have |(Vj − vj)(x2N )| ≤ CN−1.
Hence |vj(xi)− Vj(xi)| ≤ CN−1, i ∈ Ω̄2N , where j = 1, 2. �

Theorem 5.2. Let W̄ (xi) be a numerical solution of (3.6) defined by (4.4). Then

|wj(xi)−Wj(xi)| ≤ CN−1ln2N, xi ∈ Ω̄2N , where j = 1, 2.

Proof. Note that

|wj(xi)−Wj(xi)| ≤ |uj(xi)− Uj(xi)|+ |vj(xi)− Vj(xi)|
Then by (3.12), Theorem 3.4 and Theorem 4.3, we have

|uj(xi)− Uj(xi)| ≤ |Uj(xi)− Vj(xi)|+ |vj(xi)− Vj(xi)|+ |uj(xi)− vj(xi)|.
Now,

|wj(xi)−Wj(xi)| ≤ |Uj(xi)− Vj(xi)|+ 2|vj(xi)− Vj(xi)|+ |uj(xi)− vj(xi)|,

≤ C1N
−1 + C1 exp(

−α(2− x)

ε
) + ε
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≤ C1 exp(
−ασ
ε

) + C1N
−1 ≤ CN−1, i = 0 to

3N

2
(5.1)

Consider mesh functions

ϕ±j (xi) = C1N
−1s̄(xi)+C1N

−1 σ

ε2
(xi−(2−σ))±(wj(xi)−Wj(xi)) xi ∈ [2−σ, 2]∩ Ω̄2N .

From (5.1), it is easy to check ϕ±j (x 3N
2
) ≥ 0 and Kjϕ

±
j (x2N ) ≥ 0, for a suitable choice of

C1>0.

LN
j ϕ

±
j (xi) ≥ C1N

−1[βj + γj ] + C1N
−1 σ

ε2
[α+ βj(xi + σ − 2) + γj(xi+N

2
+ σ − 2)]

±CN−1ε−2

≥ 0

Then by the Theorem 5.1, we have ϕ±j (xi) ≥ 0, xi ∈ Ω̄2N . Therefore

|wj(xi)−Wj(xi)| ≤ CN−1ln2N, xi ∈ Ω̄2N , where j = 1, 2.

Hence the proof. �

Theorem 5.3. Let Ū(xi) be the solution of (2.2)− (2.4) defined in (4.1)− (4.2). Then

|uj(xi)− Uj(xi)|Ω̄2N ≤ CN−1(lnN)2, where j = 1, 2.

Proof. Combining Theorem 5.1 and Theorem 5.2, the proof gets completed. �

6. NUMERICAL RESULTS

Example 6.1.{
−εu′′1(x) + 11u′(x) + 10u1(x)− 2u2(x)− x2u1(x− 1)− xu2(x− 1) = ex, x ∈ Ω∗

−εu′′1(x) + 16u′(x)− 2u1(x) + 10u2(x)− xu1(x− 1)− xu2(x− 1) = ex
2
, x ∈ Ω∗

with the boundary conditions{
u1(0) = 1, u1(2)− ε

∫ 2
0

x
3u1(x)dx = 2, x ∈ Ω̄

u2(0) = 1, u2(2)− ε
∫ 2
0

x
3u2(x)dx = 2, x ∈ Ω̄.

Example 6.2.{
−εu′′1(x) + 11u′(x) + 6u1(x)− 2u2(x)− u1(x) = 0, x ∈ Ω∗

−εu′′1(x) + 16u′(x)− 2u1(x) + 5u2(x)− u2(x) = 0, x ∈ Ω∗

with the boundary conditions{
u1(0) = 1, u1(2)− ε

∫ 2
0

x
3u1(x)dx = 2, x ∈ Ω̄

u2(0) = 1, u2(2)− ε
∫ 2
0

x
3u2(x)dx = 2, x ∈ Ω̄.
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TABLE 1. Maximum pointwise errors and order of convergence for Example 6.1

Number of mesh points 2N
32 64 128 256 512 1024

DN
1 6.0996e-03 3.0853e-03 1.5512e-03 7.7754e-04 3.8912e-04 1.9459e-04

PN
1 9.8329e-01 9.9200e-01 9.9644e-01 9.9869e-01 9.9981e-01 -
DN

2 4.5859e-03 2.3027e-03 1.1532e-03 5.7681e-04 2.8833e-04 1.4408e-04
PN
2 9.9391e-01 9.9764e-01 9.9949e-01 1.0004e+00 1.0009e+00 -

TABLE 2. Maximum pointwise errors and order of convergence for Example 6.2

Number of mesh points 2N
32 64 128 256 512 1024

DN
1 4.3386e-03 2.2283e-03 1.1292e-03 5.6836e-04 2.8512e-04 1.4283e-04

PN
1 9.6127e-01 9.8063e-01 9.9047e-01 9.9523e-01 9.9723e-01 -
DN

2 4.4291e-03 2.2517e-03 1.1349e-03 5.6958e-04 2.8527e-04 1.4276e-04
PN
2 9.7596e-01 9.8846e-01 9.9462e-01 9.9756e-01 9.9878e-01 -

The analytical solution of the above example are not available. Therefore, we estimate the
error using double mesh principle which is defined as DN

ε = max
xi∈Ω̄2N

ε

|UN (xi) − U2N (xi)|

and DN = max
ε
DN

ε where UN (xi) and U2N (xi) denote the numerical solution computed
using N and 2N mesh points. From these quantities the order of convergence is defined as
PN = log2(

DN

D2N ). In Tables 1 and 2, DN
1 and DN

2 denote the maximum pointwise errors of
U1 and U2 respectively, PN

1 and PN
2 denote the order of convergence with respect to U1 and

U2 respectively.
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FIGURE 1. Graph of the numerical solution of Example 6.1 for n = 128 and
ε = 2−8.
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The numerical solution of Example (6.2) is plotted in Figure 2.
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FIGURE 2. Graph of the numerical solution of Example 6.2 for n = 128 and
ε = 2−12.

7. CONCLUSION

We have solved a class of system of singularly perturbed boundary value problem (2.1) with
integral boundary conditions, using a finite difference method on Shishkin mesh. The method
is shown to be of order O(N−1 ln2N), that is, the method has almost first order convergence
with respect to ε. Two examples are given to illustrate the numerical method. Our numerical
results reflect the theoretical estimates. Maximum pointwise errors and order of convergence
of the Examples (6.1) and (6.2) are given in Table 1 and 2 respectively. The numerical solution
of Example (6.1) is plotted in Figure 1.
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