• Title/Summary/Keyword: Finite and Infinite Model

Search Result 191, Processing Time 0.027 seconds

A diffusion approximation for time-dependent queue size distribution for M/G/m/N system

  • Park, Bong-Dae;Shin, Yang-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.211-236
    • /
    • 1995
  • The purpose of this paper is to provide a transient diffusion approximation of queue size distribution for M/G/m/N system. The M/G/m/N system can be expressed as follows. The interarrival times of customers are exponential and the service times of customers have general distribution. The system can hold at most a total of N customers (including the customers in service) and any further arriving customers will be refused entry to the system and will depart immediately without service. The queueing system with finite capacity is more practical model than queueing system with infinite capacity. For example, in the design of a computer system one of the important problems is how much capacity is required for a buffer memory. It its capacity is too little, then overflow of customers (jobs) occurs frequently in heavy traffic and the performance of system deteriorates rapidly. On the other hand, if its capacity is too large, then most buffer memories remain unused.

  • PDF

Wave Responses of Buoyant Flap-typed Storm Surge Barriers - Numerical Simulation (부유 플랩형 고조방파제의 파랑응답 - 수치모의)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.196-208
    • /
    • 2009
  • In this paper, wave responses of buoyant flap-typed storm surge barriers was studied numerically. Wave motions were modeled by using a linear potential wave theory, and behaviors of structures were represented as a Newton's 2nd law of motion. The near field region of the fluid was discretized as conventional quadratic iso-parametric elements, while the far field was modeled as infinite elements. Comparisons with the results from hydraulic model tests show that the present model gives good results. By using the model, the applicability of a buoyant flap-typed storm surge barrier in Masan bay was investigated considering field environmental conditions.

Performance of under foundation shock mat in reduction of railway-induced vibrations

  • Sadeghi, Javad;Haghighi, Ehsan;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.425-437
    • /
    • 2021
  • Under foundation shock mats have been used in the current practice in order to reduce/damp vibrations received by buildings through the surrounding environment. Although some investigations have been made on under foundation shock mats performance, their effectiveness in the reduction of railway induced-vibrations has not been fully studied, particularly with the consideration of underneath soil media. In this regard, this research is aimed at investigating performance of shock mat used beneath building foundation for reduction of railway induced-vibrations, taking into account soil-structure interaction. For this purpose, a 2D finite/infinite element model of a building and its surrounding soil media was developed. It includes an elastic soil media, a railway embankment, a shock mat, and the building. The model results were validated using an analytical solution reported in the literature. The performance of shock mats was examined by an extensive parametric analysis on the soil type, bedding modulus of shock mat and dominant excitation frequency. The results obtained indicated that although the shock mat can substantially reduce the building vibrations, its performance is significantly influenced by its underneath soil media. The softer the soil, the lower the shock mat efficiency. Also, as the train excitation frequency increases, a better performance of shock-mats is observed. A simplified model/method was developed for prediction of shock mat effectiveness in reduction of railway-induced vibrations, making use of the results obtained.

Estimation of Directional Frequency Response Functions for Asymmetric Rotor with Anisotropic Stators (비대칭성과 비등방성이 공존하는 회전체에서의 방향성 주파수 응답 함수 추정)

  • 서윤호;강성우;서정환;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.681-686
    • /
    • 2004
  • Identification of asymmetry and anisotropy of rotor system is important for diagnosis of rotating machinery. Directional frequency response functions (dFRFs) are known to be powerful tool in effectively detecting the presence of asymmetry or anisotropy. In this paper, an estimation method of dFRFs for rotors is newly developed, when both asymmetry and anisotropy are present. The method transforms the finite degrees-of-freedom time-varying linear differential equation of motion to an infinite degree-of-freedom time-invariant linear one, employing the modulated coordinates. The validity of the method is demonstrated by numerical simulation with a simple rotor model.

  • PDF

Transient Response of a Stratified Thermal Storage Tank to the Variation of Inlet Temperature

  • Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.14-26
    • /
    • 1998
  • This paper deals with approximate analytical solutions for the two-region one-dimensional model describing the charging process of stratified thermal storage tanks at variable inlet temperature with momentum-induced mixing. An arbitrarily increasing inlet temperature is decomposed into inherent step changes and intervals of continuous change. Each continuous interval is approximated as a finite number of piecewise linear functions, which admits an analytical solution for perfectly mixed region. Using the Laplace transform, the temperature profiles in plug flow region with both the semi-infinite and adiabatic ends are successfully derived in terms of well-defined functions. The effect of end condition on the solution proves to be negligible under the practical operating conditions. For a Quadratic variation of inlet temperature, the approximate solution employing a moderate number of pieces agrees excellently with the exact solution.

  • PDF

Robust Multiuser Detection Based on Least p-Norm State Space Filtering Model

  • Zha, Daifeng
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2007
  • Alpha stable distribution is better for modeling impulsive noises than Gaussian distribution in signal processing. This class of process has no closed form of probability density function and finite second order moments. In general, Wiener filter theory is not meaningful in S$\alpha$SG environments because the expectations may be unbounded. We proposed a new adaptive recursive least p-norm Kalman filtering algorithm based on least p-norm of innovation process with infinite variances, and a new robust multiuser detection method based on least p-norm Kalman filtering. The simulation experiments show that the proposed new algorithm is more robust than the conventional Kalman filtering multiuser detection algorithm.

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method (가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

Seismic Response Analysis of Dam-Reservoir System Using Transmitting Boundary (전달경계를 이용한 댐-호소 계의 지진응답해석)

  • 조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.123-132
    • /
    • 1999
  • One of the major difficulties in the seismic analysis of a dam-reservoir system is the treatment of the energy radiation in the upstream direction of the reservoir. In the paper, a new transmitting boundary is presented that can model properly the radiation of energy in the far field direction of a semi-infinite reservoir with constant depth. In the newly developed method, effects of surface wave motion are taken into accounted and the reservoir-foundation interaction is approximately accounted for with an absorbing boundary condition. If a dam has vertical upstream face and the infinitely long reservoir maintains constant depth, then the proposed transmitting boundary can be directly coupled with the model of dam body. In present study, the dam body is assumed to behave elastically and modeled by finite element method. Seismic responses of a dam model are investigated using the newly developed transmitting boundary.

  • PDF

PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE MATSUMOTO METRIC

  • Park, Hong-Suh;Lee, Il-Yong;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.501-513
    • /
    • 2003
  • The Matsumoto metric is an ($\alpha,\;\bata$)-metric which is an exact formulation of the model of Finsler space. Lately, this metric was expressed as an infinite series form for $$\mid$\beat$\mid$\;<\;$\mid$\alpha$\mid$$ by the first author. He introduced an approximate Matsumoto metric as the ($\alpha,\;\bata$)-metric of finite series form and investigated it in [11]. The purpose of the present paper is devoted to finding the condition for a Finsler space with an approximate Matsumoto metric to be projectively flat.