• 제목/요약/키워드: Finite Fourier series

검색결과 101건 처리시간 0.022초

정상상태에서의 비정현적 입력전압의 주파수 민감도 해석 (Frequency Sensitivity Analysis of Nonsinusoidal Input Voltage in Steady State)

  • 최명준;이세희;김창현;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.124-126
    • /
    • 1997
  • A number of electromagnetic devices periodically driven by solid-state switches have been analyzed with time-stepping finite element method, which requires much time to reach a steady state. The sensitivity analysis which have been used for the shape design is employed for an efficient calculation of linear magnetodynamics with nonsinusoidal driving sources. The high-order frequency sensitivity from the harmonic finite element formulation is used along with Fourier transform and Taylor series expansion. The algorithm is validated through a numerical example of a single-phase transformer driven by a trapezoidal voltage source.

  • PDF

단순지지된 두 원판의 유체연성 고유진동 해석 (Hydroelastic Vibration Analysis of Two Circular Plates with Simply Supported Boundary Condition)

  • 정경훈;이규만;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.603-608
    • /
    • 2001
  • This paper deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid is filled between the two plates and the plates are simply supported along the plate edges. The proposed method is verified by the finite element analysis using commercial software with an excellent accuracy. The effect of the plate boundary conditions on the fluid-coupled natural frequency is investigated.

  • PDF

Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells

  • Dogan, Ali;Arslan, H. Murat;Yerli, Huseyin R.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.493-510
    • /
    • 2010
  • This paper presents effects of anisotropy and curvature on free vibration characteristics of cross-ply laminated composite cylindrical shallow shells. Shallow shells have been considered for different lamination thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and deformation have been showed. Then, using Hamilton's principle, governing differential equations have been obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply composite shells has been given. By using some simplifications and assuming Fourier series as a displacement field, differential equations are solved by matrix algebra for shallow shells. The results obtained by this solution have been given tables and graphs. The comparisons made with the literature and finite element program (ANSYS).

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권3호
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.

진행파동장하 해저지반내 잔류간극수압의 해석해 (An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed)

  • 이광호;김동욱;김도삼;김태형;김규한;류흥원
    • 한국해안·해양공학회논문집
    • /
    • 제27권3호
    • /
    • pp.159-167
    • /
    • 2015
  • 본 연구에서는 잔류간극수압의 추정에 관한 기존의 해석해에서 지적된 오류를 수정한 새로운 해석해를 제시한다. Fourier급수전개법과 변수분리법으로 산정된 해석해의 타당성은 기존의 해석해, 수치해석해 및 실험결과와 비교 검토로부터 검증된다. 무한 (깊은)두께의 본 해석해는 기존의 해석해보다는 수치적분 등이 수행될 필요가 없는 보다 간단한 식이다. 유한두께에 관한 해석해에 지반두께를 매우 작게 한 경우 극한의 얕은 두께로 점근적인 접근은 가능하지만, 지반두께를 매우 크게 한 경우 극한의 무한두께로 접근은 불가능하며, 유한두께와 무한두께의 사이에는 불연속적인 영역이 존재한다.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

유한요소법을 이용한 집중하중을 받는 임의단면형상부재에서 응력집중현상과 소멸현상에 관한 연구 (A Study on the Stress Concentration and Diminishing in Structural Member with Arbitrary Section Using Finite Element Method)

  • 최종근;이종재;김동현
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1069-1078
    • /
    • 1990
  • 본 연구에서는 평면응력 및 평면변형률 문제의 유한요소법해석에 있어서 기존 의 면적좌표를 이용한 삼각형요소나 4절점 isoparametric 사변형요소보다도 정확도가 높은 에너지 직교함수(energy orthogonal function)에 의한 사변형요소를 개발하고 이 유한요소 프로그램을 이용하여 사각형 부재내의 집중하중과 분포하중에 의한 응력집중 현상과 소멸현상을 고찰하는데 있다.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Waviness가 있는 볼베어링으로 지지된 회전계의 동특성 해석 (II)-안정성 해석 - (Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I) -Vibration Analysis-)

  • 정성원;장건희
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2647-2655
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness i n a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time -varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i=1,2,3..).