Elliptic curve cryptosystems based on discrete logarithm problem in the group of points of an elliptic curve defined over a finite field. The discrete logarithm in an elliptic curve group appears to be more difficult than discrete logarithm problem in other groups while using the relatively small key size. An implementation of elliptic curve cryptosystems needs finite field arithmetic computation. Hence finite field arithmetic modules must require less hardware resources to archive high performance computation. In this paper, a new architecture of finite field multiplier using conversion scheme of normal basis representation into polynomial basis representation is discussed. Proposed architecture provides less resources and lower complexity than conventional bit serial multiplier using normal basis representation. This architecture has synthesized using synopsys FPGA express successfully.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제6권2호
/
pp.75-84
/
2002
Using good properties of an optimal normal basis of type I in a finite field ${\mathbb{F}}_{2^m}$, we present a design of a bit serial multiplier of Berlekamp type, which is very effective in computing $xy^2$. It is shown that our multiplier does not need a basis conversion process and a squaring operation is a simple permutation in our basis. Therefore our multiplier provides a fast and an efficient hardware architecture for a bit serial multiplication of two elements in ${\mathbb{F}}_{2^m}$.
정보 보호 응용에 새로운 이슈가 되고 있는 ECC 공개키 암호 알고리즘은 유한체 차원에서의 효율적인 연산처리가 중요하다. 직렬 유한체 곱셈기의 근간은 Mastrovito의 직렬 곱셈기에서 유래한다. 본 논문에서는 polynomial basis 방식을 적용하고 식을 유도하여 Mastrovito의 직렬 유한체 곱셈방식의 3배 성능을 보이는 유한체 곱셈기를 제안하고, HDL로 기술하여 기능을 검증하고 성능을 평가한다. 설계된 3배속 직렬 유한체 곱셈기는 부분합을 생성하는 회로의 추가만으로 기존 직렬 곱셈기의 3배의 성능을 보여주었다. 비도 높은 암호용으로 연구된 유한체 곱셈 연산기는 크게 직렬 유한체 곱셈기, 배열 유한체 곱셈기, 하이브리드 유한체 곱셈기으로 분류되어 왔다. 본 논문에서는 Mastrovito의 곱셈기의 구조를 기본으로 하고, 수식적으로 공통인수를 끌어내어 후처리하는 기법을 유도하여 적용한다. 제안한 방식으로 설계한 새로운 유한체 곱셈기는 HDL로 구현하여 소프트웨어 측면 뿐 아니라 하드웨어 측면에서도 그 기능과 성능을 검증하였다.
타원곡선 암호 시스템에서 유한체 연산은 핵심적인 부분을 차지하고 있지만 곱셈의 경우 연산 과정이 복잡하여 이를 위한 효율적인 알고리즘 및 하드웨어 설계가 필요하다. 본 논문에서는 매우 큰 소수 m을 가지는 $GF(2^m)$상에서 효율적인 면적과 연산시간을 갖는 Radix-4 시스톨릭 곱셈기를 제안한다. 제안된 유한체 곱셈기는 표준기저 방식을 사용하였으며 수학적 정리를 통해 보다 효율적인 알고리즘을 제안하고 이를 VLSI 설계에 적합하도록 시스톨릭 구조를 이용하여 설계하였다. 제안된 구조는 기존의 병렬 곱셈기 및 직렬 곱셈기, 시스톨릭 곱셈기와 비교해서 효율적인 면적과 연산 시간을 갖는다. 본 연구에서는 $GF(2^{193})$에서 동작하는 유한체 곱셈기를 설계하였으며, 하이닉스 $0.35{\mu}m$ 표준 셀 라이브러리를 사용하여 합성한 결과 최대 동작 주파수는 400MHz이다.
유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 타입 I 최적 정규기저를 갖는 유한체 $GF(2^m)$은 m 이 짝수이기 때문에 어떤 암호계에는 응용되지 못하는 단점이 있다. 그러나 타입 II 최적 정규기저를 갖는 유한체의 경우는 NIST에서 제안한 ECDSA 의 권장 커브가 주어진 $GF(2^{233})$이 타입 II 최적 정규 기저를 갖는 등 여러 응용분야에 적용 되므로, 이에 대한 효율적인 구현에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 타입 II 최적 정규기저를 갖는 유한체 $GF(2^m)$의 연산을 정규기저를 이용하여 표현하여 확대체 $GF(2^{2m})$의 원소로 표현하여 연산을 하는 새로운 비트-병렬 곱셈기를 제안하였으며, 기존의 가장 효율적인 곱셈기들보다 블록 구성방법이 용이하며, XOR gate 수가 적은 저 복잡도 곱셈기이다.
본 논문은 암호화 장치 및 오류정정부호화 장치 등에서 핵심적으로 사용되고 있는 유한체승산기(finite-field multiplier)의 최적화된 구조를 제안한다. 제안된 구조는 LFSR(Linear Feedback Shift Register)구조를 갖는 유한체 승산기에서 소비전력과 회로면적을 최소화 하여 기존의 LFSR 구조를 바탕으로 하는 유한체 승산기에 비하여 효율적인 승산을 이루도록 한다. 기존의 LFSR 구조의 유한체 승산기는 m비트의 다항식을 승산 하는데 3${\cdot}$m개의 플립플롭(flip-flop)이 필요하다. 1개의 플립플롭은 2개의 래치(latch)로 구성되기 때문에 6${\cdot}$m개의 래치가 소요된다. 본 논문에서는 4${\cdot}$m개의 래치(m 개의 플립플롭과 2${\cdot}$m개의 래치)로 m 비트의 다항식을 승산 할 수 있는 유한체 승산기를 제안하였다. 본 논문의 유한체 승산기는 기존의 LFSR 구조의 유한체 승산기에 비하여 회로구현에 필요한 래치의 개수가 1/3(약 33%)이 감소하였다. 결과적으로 기존의 방법에 비하여 저 소비전력 및 저 면적의 유한체 승산기를 암호화 장치 및 오류정정부호화 장치 등에서 효과적으로 사용이 가능하다.
Elliptic curve cryptography (ECC) offers the highest security per bit among the known public key cryptosystems. The operation of ECC is based on the arithmetic of the finite field. This paper presents the design of a 193-bit finite field multiplier and an inversion unit based on a normal basis representation in which the inversion and the square operation units are easy to implement. This scalable multiplier can be constructed in a variable structure depending on the performance area trade-off. We implement it using Verilog HDL and a 0.35 ${\mu}m$ CMOS cell library and verify the operation by simulation.
Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.
In this paper, an efficient architecture for the finite field multiplier is proposed. This architecture is faster and smaller than any other LFSR architectures. The traditional LFSR architecture needs t x m registers for achieving the t times speed. But, we designed He multiplier using a novel fast architecture without increasing the number of registers. The proposed multiplier is verified with a VHDL description using SYNOPSYS simulator. The measured results show that the proposed multiplier is 2 times faster than the serial LFSR multiplier. The proposed multiplier is expected to become even more advantageous in the smart card cryptography processors.
Galois field arithmetic is important in error correcting codes and public-key cryptography schemes. Hardware realization of these schemes requires an efficient implementation of Galois field arithmetic operations. Multiplication is the main finite field operation and designing efficient multiplier can clearly affect the performance of compute-intensive applications. Diverse algorithms and hardware architectures are presented in the literature for hardware realization of Galois field multiplication to acquire a reduction in time and area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel processing by partitioning Montgomery modular multiplication (MMM) into two independent and identical units and two-level systolic computation scheme. Analytical results indicate that the proposed multiplier achieves lower area-time (AT) complexity compared to related multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and thus is well suited for VLSI implementation. It can be applied as a core circuit for multiplication and division/exponentiation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.