• 제목/요약/키워드: Finite Field Multiplier

검색결과 109건 처리시간 0.029초

타원곡선 암호화 시스템을 위한 유한필드 곱셈기의 설계 (Design of Finite Field Multiplier for Elliptic Curve Cryptosystems)

  • 이욱;이상설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2576-2578
    • /
    • 2001
  • Elliptic curve cryptosystems based on discrete logarithm problem in the group of points of an elliptic curve defined over a finite field. The discrete logarithm in an elliptic curve group appears to be more difficult than discrete logarithm problem in other groups while using the relatively small key size. An implementation of elliptic curve cryptosystems needs finite field arithmetic computation. Hence finite field arithmetic modules must require less hardware resources to archive high performance computation. In this paper, a new architecture of finite field multiplier using conversion scheme of normal basis representation into polynomial basis representation is discussed. Proposed architecture provides less resources and lower complexity than conventional bit serial multiplier using normal basis representation. This architecture has synthesized using synopsys FPGA express successfully.

  • PDF

EFFICIENT BIT SERIAL MULTIPLIERS OF BERLEKAMP TYPE IN ${\mathbb{F}}_2^m$

  • KWON, SOONHAK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.75-84
    • /
    • 2002
  • Using good properties of an optimal normal basis of type I in a finite field ${\mathbb{F}}_{2^m}$, we present a design of a bit serial multiplier of Berlekamp type, which is very effective in computing $xy^2$. It is shown that our multiplier does not need a basis conversion process and a squaring operation is a simple permutation in our basis. Therefore our multiplier provides a fast and an efficient hardware architecture for a bit serial multiplication of two elements in ${\mathbb{F}}_{2^m}$.

  • PDF

Polynomial basis 방식의 3배속 직렬 유한체 곱셈기 (3X Serial GF($2^m$) Multiplier Architecture on Polynomial Basis Finite Field)

  • 문상국
    • 한국정보통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.328-332
    • /
    • 2006
  • 정보 보호 응용에 새로운 이슈가 되고 있는 ECC 공개키 암호 알고리즘은 유한체 차원에서의 효율적인 연산처리가 중요하다. 직렬 유한체 곱셈기의 근간은 Mastrovito의 직렬 곱셈기에서 유래한다. 본 논문에서는 polynomial basis 방식을 적용하고 식을 유도하여 Mastrovito의 직렬 유한체 곱셈방식의 3배 성능을 보이는 유한체 곱셈기를 제안하고, HDL로 기술하여 기능을 검증하고 성능을 평가한다. 설계된 3배속 직렬 유한체 곱셈기는 부분합을 생성하는 회로의 추가만으로 기존 직렬 곱셈기의 3배의 성능을 보여주었다. 비도 높은 암호용으로 연구된 유한체 곱셈 연산기는 크게 직렬 유한체 곱셈기, 배열 유한체 곱셈기, 하이브리드 유한체 곱셈기으로 분류되어 왔다. 본 논문에서는 Mastrovito의 곱셈기의 구조를 기본으로 하고, 수식적으로 공통인수를 끌어내어 후처리하는 기법을 유도하여 적용한다. 제안한 방식으로 설계한 새로운 유한체 곱셈기는 HDL로 구현하여 소프트웨어 측면 뿐 아니라 하드웨어 측면에서도 그 기능과 성능을 검증하였다.

타원곡선 암호를 위한 시스톨릭 Radix-4 유한체 곱셈기 설계 (Design of a systolic radix-4 finite-field multiplier for the elliptic curve cryptography)

  • 박태근;김주영
    • 대한전자공학회논문지SD
    • /
    • 제43권3호
    • /
    • pp.40-47
    • /
    • 2006
  • 타원곡선 암호 시스템에서 유한체 연산은 핵심적인 부분을 차지하고 있지만 곱셈의 경우 연산 과정이 복잡하여 이를 위한 효율적인 알고리즘 및 하드웨어 설계가 필요하다. 본 논문에서는 매우 큰 소수 m을 가지는 $GF(2^m)$상에서 효율적인 면적과 연산시간을 갖는 Radix-4 시스톨릭 곱셈기를 제안한다. 제안된 유한체 곱셈기는 표준기저 방식을 사용하였으며 수학적 정리를 통해 보다 효율적인 알고리즘을 제안하고 이를 VLSI 설계에 적합하도록 시스톨릭 구조를 이용하여 설계하였다. 제안된 구조는 기존의 병렬 곱셈기 및 직렬 곱셈기, 시스톨릭 곱셈기와 비교해서 효율적인 면적과 연산 시간을 갖는다. 본 연구에서는 $GF(2^{193})$에서 동작하는 유한체 곱셈기를 설계하였으며, 하이닉스 $0.35{\mu}m$ 표준 셀 라이브러리를 사용하여 합성한 결과 최대 동작 주파수는 400MHz이다.

최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기 (A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.409-416
    • /
    • 2014
  • 유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 타입 I 최적 정규기저를 갖는 유한체 $GF(2^m)$은 m 이 짝수이기 때문에 어떤 암호계에는 응용되지 못하는 단점이 있다. 그러나 타입 II 최적 정규기저를 갖는 유한체의 경우는 NIST에서 제안한 ECDSA 의 권장 커브가 주어진 $GF(2^{233})$이 타입 II 최적 정규 기저를 갖는 등 여러 응용분야에 적용 되므로, 이에 대한 효율적인 구현에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 타입 II 최적 정규기저를 갖는 유한체 $GF(2^m)$의 연산을 정규기저를 이용하여 표현하여 확대체 $GF(2^{2m})$의 원소로 표현하여 연산을 하는 새로운 비트-병렬 곱셈기를 제안하였으며, 기존의 가장 효율적인 곱셈기들보다 블록 구성방법이 용이하며, XOR gate 수가 적은 저 복잡도 곱셈기이다.

래치구조의 저면적 유한체 승산기 설계 (Design of a Small-Area Finite-Field Multiplier with only Latches)

  • 이광엽
    • 전기전자학회논문지
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2003
  • 본 논문은 암호화 장치 및 오류정정부호화 장치 등에서 핵심적으로 사용되고 있는 유한체승산기(finite-field multiplier)의 최적화된 구조를 제안한다. 제안된 구조는 LFSR(Linear Feedback Shift Register)구조를 갖는 유한체 승산기에서 소비전력과 회로면적을 최소화 하여 기존의 LFSR 구조를 바탕으로 하는 유한체 승산기에 비하여 효율적인 승산을 이루도록 한다. 기존의 LFSR 구조의 유한체 승산기는 m비트의 다항식을 승산 하는데 3${\cdot}$m개의 플립플롭(flip-flop)이 필요하다. 1개의 플립플롭은 2개의 래치(latch)로 구성되기 때문에 6${\cdot}$m개의 래치가 소요된다. 본 논문에서는 4${\cdot}$m개의 래치(m 개의 플립플롭과 2${\cdot}$m개의 래치)로 m 비트의 다항식을 승산 할 수 있는 유한체 승산기를 제안하였다. 본 논문의 유한체 승산기는 기존의 LFSR 구조의 유한체 승산기에 비하여 회로구현에 필요한 래치의 개수가 1/3(약 33%)이 감소하였다. 결과적으로 기존의 방법에 비하여 저 소비전력 및 저 면적의 유한체 승산기를 암호화 장치 및 오류정정부호화 장치 등에서 효과적으로 사용이 가능하다.

  • PDF

A Scalable Structure for a Multiplier and an Inversion Unit in $GF(2^m)$

  • Lee, Chan-Ho;Lee, Jeong-Ho
    • ETRI Journal
    • /
    • 제25권5호
    • /
    • pp.315-320
    • /
    • 2003
  • Elliptic curve cryptography (ECC) offers the highest security per bit among the known public key cryptosystems. The operation of ECC is based on the arithmetic of the finite field. This paper presents the design of a 193-bit finite field multiplier and an inversion unit based on a normal basis representation in which the inversion and the square operation units are easy to implement. This scalable multiplier can be constructed in a variable structure depending on the performance area trade-off. We implement it using Verilog HDL and a 0.35 ${\mu}m$ CMOS cell library and verify the operation by simulation.

  • PDF

GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기 (Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)))

  • 김태완;김기원
    • 대한임베디드공학회논문지
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.

저면적 암호프로세서를 위한 고속직렬유한체 승산기설계 (Design of a fast-serial finite field multiplier for Low cost Cryto-processors)

  • 김영훈;이광엽;김원종;배영환;조한진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.289-292
    • /
    • 2002
  • In this paper, an efficient architecture for the finite field multiplier is proposed. This architecture is faster and smaller than any other LFSR architectures. The traditional LFSR architecture needs t x m registers for achieving the t times speed. But, we designed He multiplier using a novel fast architecture without increasing the number of registers. The proposed multiplier is verified with a VHDL description using SYNOPSYS simulator. The measured results show that the proposed multiplier is 2 times faster than the serial LFSR multiplier. The proposed multiplier is expected to become even more advantageous in the smart card cryptography processors.

  • PDF

유한체상의 낮은 복잡도를 갖는 시스톨릭 몽고메리 곱셈 (Low Complexity Systolic Montgomery Multiplication over Finite Fields GF(2m))

  • 이건직
    • 디지털산업정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Galois field arithmetic is important in error correcting codes and public-key cryptography schemes. Hardware realization of these schemes requires an efficient implementation of Galois field arithmetic operations. Multiplication is the main finite field operation and designing efficient multiplier can clearly affect the performance of compute-intensive applications. Diverse algorithms and hardware architectures are presented in the literature for hardware realization of Galois field multiplication to acquire a reduction in time and area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel processing by partitioning Montgomery modular multiplication (MMM) into two independent and identical units and two-level systolic computation scheme. Analytical results indicate that the proposed multiplier achieves lower area-time (AT) complexity compared to related multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and thus is well suited for VLSI implementation. It can be applied as a core circuit for multiplication and division/exponentiation.