
ETRI Journal, Volume 25, Number 5, October 2003 Chanho Lee et al. 315

Elliptic curve cryptography (ECC) offers the highest
security per bit among the known public key cryptosystems.
The operation of ECC is based on the arithmetic of the
finite field. This paper presents the design of a 193-bit finite
field multiplier and an inversion unit based on a normal
basis representation in which the inversion and the square
operation units are easy to implement. This scalable
multiplier can be constructed in a variable structure
depending on the performance area trade-off. We
implement it using Verilog HDL and a 0.35 µm CMOS cell
library and verify the operation by simulation.

Keywords: Elliptic curve cryptography, multiplier,
inversion, finite field.

Manuscript received Jan. 15, 2003; revised June 30, 2003.
This work was supported by the Soongsil University Research Fund.
Chanho Lee (phone: +82 2 820 0710, email: chanho@e.ssu.ac.kr) and Jeongho Lee (email:

enom@e.ssu.ac.kr) are with the Department of Electronic Engineering, Soongsil University,
Seoul, Korea.

I. Introduction

Electronic security has been of considerable interest in
recent years because of the increase in electronic transactions.
The developing technology requires a longer key length to
satisfy higher levels of security. However, as the key length
becomes longer, the operation time increases even more, as
does the design complexity and area. Hence, a cryptography
algorithm with a short key length and a satisfactory security
level is desirable.

Elliptic curve cryptography (ECC) offers the highest
security per bit among the known public key cryptosystems
[1]-[3]. For example, the RSA system (Rivest, Shamir and
Adelman) [4] with a 1024-bit key has a security level similar
to an ECC system with a 160-bit key [5]. The benefit of
smaller key sizes makes ECC particularly attractive for
embedded applications since its implementation requires less
memory and processing power [3].

Several standard specifications of ECC recommend an
elliptic curve over a finite field with a size of 160 bits or more.
The elliptic curve cryptosystem with a 160-bit modulus is
expected to be secure for 10 years [6], [7]. We expect that the
elliptic curve cryptosystem with a 193-bit modulus will be
secure for 20 years [7].

The operation of ECC is based on the arithmetic of the
finite field. The most frequently used finite field arithmetic
operations in ECC are addition and multiplication, and the
most time-consuming finite field arithmetic operation in ECC
is inversion. The finite field operation can be performed
based on a polynomial basis representation or a normal basis
representation. The square operation and inverse operation
are easy to implement on a normal basis representation [8].
The shortcoming of the multiplier based on a normal basis

A Scalable Structure for a
Multiplier and an Inversion Unit in GF(2m)

 Chanho Lee and Jeongho Lee

316 Chanho Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

operation is that the binary function for the multiplication
must be recalculated for different sizes of operands. However,
since only several ECC systems are commonly used, this
shortcoming is not significant.

There are roughly three types of efficient inversion
algorithm for the normal basis representation. Itoh and Tsujii
[9] proposed one, G. L. Feng [10] another, and Takagi [11] yet
another. The performance of the inversion unit in a normal
basis representation depends on that of the multiplier. There
are three types of multipliers: the parallel input and serial
output by Massey and Omura [12] and Reyhani-Masoleh
[13], the serial input and parallel output by G. L. Feng [10],
and the parallel input and parallel output by C. C. Wang [14]
and Reyhani-Masoleh [15]. The first and second types take m
cycles to obtain the result for m-bit operation. The last one
needs more than m times the area of the others though it takes
only 1 cycle to obtain the result.

In this paper, we propose a new multiplier structure with
scalable output sizes and operation cycles in GF(2m) using a
normal basis. The number of output bits can be freely chosen
in the new architecture with the performance area trade-off
depending on the application. Using this architecture, we
designed a 193-bit multiplication/inversion unit with a
multiplier with an 8-bit output/cycle and a 25 cycle-operation
time. We implemented it using 0.35 µm CMOS technology
and verified the operation by simulation.

II. Multiplier

A normal basis for GF(2m) is a set of the form

}.,,,,,{
12210 22222 −−

ααααα
mm

Λ (1)

The representation of GF(2m) via the normal basis is
carried out by interpreting the bit string (a0a1a2…am-1) as the
element

.
1210 2

1
2

2
2

1
2

0

−

α++α+α+α= −

m

maaaaA Λ (2)

In the normal basis representation, A2 is a cyclic shift of A.

.
1210 2

2
2

1
2

0
2

1
2 −

α++α+α+α= −−

m

mm aaaaA Λ (3)

Let A=(a0a1a2…am-1) and B=(b0b1b2…bm-1) be two
elements GF(2m) in a normal basis representation and
C=(c0c1c2…cm-1) be the product. The last term cm-1 of the
product C is some binary function of the components of A
and B.

).,,,;,,,(1101101 −−− = mmm bbbaaafc ΛΛ (4)

Fig. 1. Massey-Omura multiplier.

a0 a 1 a2 a3 a4

1 bit cyclic shift

F
(MO logic)

b0 b1 b2 b3 b4

ci

Fig. 2. Parallel type Massey-Omura multiplier.

a0 a1 a2 a3 a4

C0 C1 C2 C3 C4

b0 b1 b2 b3 b4

a1 a3 a0 b2 b4
a2 a4 b1 b3 b0

F

a2 a4 a1 b3 b0
a3 a0 b2 b4 b1

F

a3 a0 a2 b4 b1
a4 a1 b3 b0 b2

F

a4 a1 a3 b0 b2
a0 a2 b4 b1 b3

F

a0 a2 a4 b1 b3
a1 a3 b0 b2 b4

F

The squaring is the same as the cyclic shift and C2=A2×B2,
and therefore cm-2 is obtained using the same binary function as
that used to obtain cm-1 except that the components of A and B
are rotated.

).,,,;,,,(2012012 −−−−− = mmmmm bbbaaafc ΛΛ (5)

Other terms of the product can be obtained using the same
binary function as shown below.

).,,,;,,,(

),,,;,,,(
),,,;,,,(

0210210

2012012

1101101

bbbaaafc

bbbaaafc
bbbaaafc

mmmmm

mmm

ΛΛ
Μ

ΛΛ
ΛΛ

=

=
=

−−−−−

−−−

 (6)

Equation (6) defines the serial Massey-Omura (MO)
multiplier [11]. Figure 1 depicts the block diagram of the

ETRI Journal, Volume 25, Number 5, October 2003 Chanho Lee et al. 317

serial MO multiplier in GF(25).
The serial MO multiplier is the serial-output type, and it takes

m clock to obtain all the terms of the product. The parallel-
output multiplier can be implemented using m binary function
logic units in 1 cycle. However, it needs more than m times the
area. Figure 2 shows the parallel multiplier in GF(25) [16].

Equation (4) can be rewritten as shown below using a
number, n (n is an integer, 1≤n≤m):

)),,,,,
;,,,,,(

,),,,,,,
;,,,,,((

),,,,,(

)),,;,,(
,),,,;,,((

),,(
)),,;,,(

,),,,;,,((
),,(

011

011

101

101

101

212212

11

21

11

1010

1

rnmmrnm

rnmmrnm

nkmmknm

knmmknm

rnmmknm

nmnmnmnm

nmnmnmnm

nmnm

nmnmnmnm

mm

nmm

bbbb
aaaaf

bbbb
aaaaf

cccc

bbaaf
bbaaf

cc
bbaaf

bbaaf
cc

+−−++−

+−−++−

−−−−

−−−−

+−−−−

−+−−+−

−−−−−−

−−−

−+−−+−

−−

−−

=

=

=

ΛΛ
ΛΛ

ΛΛΛ
ΛΛ

ΛΛ
Μ

ΛΛ
ΛΛΛ

Λ
ΛΛ
ΛΛΛ

Λ

 (7)

where  nmk /1 =− and .rnkm +⋅= An m-bit multiplier
can be implemented using n binary F-function logic units and n-
bit cyclic shift LFSRs if C is partitioned into subsets with n
elements as shown in (7). The complexity of an F-function logic
unit depends on the generator polynomial and m. The product
can be obtained in  nm / cycles. Figure 3 gives the block
diagram of the proposed multiplier in GF(25).

Fig. 3. Proposed 5-bit multiplier with n=2.

a0 a1 a2 a3 a4

2 bit cyclic shift

a4 a1 a3 b0 b2
a0 a2 b4 b1 b3

b0 b1 b2 b3 b4

2 bit cyclic shift

c3, c1 c4, c2, c0

F F

a0 a2 a4 b1 b3
a1 a3 b0 b2 b4

III. Inversion Unit

Among the three types of inversion algorithm, the
inversion unit by G. L. Feng is preferred for implementation

because of the smaller multiplication count for 193-bit
operations. The inversion unit in GF(2m) is designed according
to the algorithm by G. L. Feng as shown below [10].

Step 1 δ: = β
Step 2 for i=q to 1 do
Step 3 begin

if mi=1 then δ := (δ)2-2i

Step 4 δ: = δ×(δ)22i-1

Step 5 if mi-1=1 then δ: = δ×β
 end

Step 6 β-1: = (δ)2m-m0

where mqmq-1…m0 is the binary expression of the number
m–1 and β is the input of the inversion. For i (1 ≤ i ≤ q), step 3,
step 4, and step 5 are executed. For example, if m=193 then
m–1 =192 =(11000000)2 =(m7m6m5m4m3m2m1m0)2 and

q=7. (δ)2-2i
 denotes the 2i bit cyclic left shift of δ and (δ)22i-1

denotes the 2i-1 bit cyclic right shift of δ. Finally, if m0=1, the 1
bit cyclic left shift of δ is the final result, and otherwise, δ is the
final result.

IV. Implementation

We use the trinomial 1)(15193 ++= xxxf that is
recommended in IEEE standard 1363 [17] for a generator
polynomial, and the F-function consists of roughly 4m AND
and XOR gates. The multiplier and inversion unit are
implemented using a 0.35 µm CMOS technology and Verilog
HDL.

We implement a multiplier that is operated with 8 bits per
cycle because the implementation efficiency is the best. The
block diagram of the implemented multiplier is shown in
Figure 4. The operation bit per cycle of the multiplier can be
changed easily by modifying the parameters of the HDL code.

Fig. 4. The block diagram of the m=193-bit multilpier.

a0 a1 … am-2

8 bit cyclic shift

am-1

m

F F F F F F F F

•

•

b0 b1 … bm-2

8 bit cyclic shift

bm-1

m

•

•
m m m m

•

•
m m

•

•
m m

•

•
m m

•

•
m m m m m m

318 Chanho Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

Figure 5 shows the implementation efficiency of the multiplier
according to the operation digit. The implementation efficiency
of a multiplier is defined as the ratio of the throughput and the
gate count in the unit of a 2-input NAND gate, which means the
number of operations per gate per second in a structure. The 193-
bit scalable multiplier units with various operation digits are
synthesized using Synopsys tools and a 0.35 µm CMOS
technology. Gate counts, operating frequencies, throughputs, and
implementation efficiencies are analyzed according to the
synthesis results. The implementation efficiencies are calculated
using the throughputs and the gate counts for various n. High
implementation efficiency means that an operation unit is
implemented with a smaller gate count for the same throughput.
A multiplier with an 8-bit operation has the best implementation
efficiency. The maximum operation frequency is 217 MHz, and
the maximum throughput is 7.4 million operations per second
(Mop/s).

Fig. 5. The implemetation efficiency of multipliers.

1.31

1.45

1.71

1.72

1.7 1.64

0.83

1.8

1.6

1.4

1.2

1.0

0.8

1 10 100
Operation bit of multiplier

Th
ro

ug
hp

ut
 p

er
 g

at
e

(n
or

m
al

iz
ed

)

Table 1 presents a summary of the characteristics of the
implemented multiplier. The proposed multiplier with an 8-bit
operation per cycle takes 4 times the area and 7 times the
throughput compared with the serial MO multiplier. However,
the parallel MO multiplier takes 195 times the area and 163
times the throughput compared with the serial MO multiplier.
Table 1 confirms that our proposed multiplier is more efficient
in implementation than the previous ones. The operation
frequency degrades due to the increased load though the
operation frequency should be the same in principle since the
same F-functions are employed. The proposed multiplier with
an 8-bit operation per cycle has twice the implementation
efficiency of the parallel MO multiplier. Another paper
presented a similar approach of a configurable structure of
multiplier using the polynomial basis in which decomposing a
structure was relatively easy [18].

The block diagram of the implemented inversion unit is

Table 1. Characteristics of multipliers.

Operation digit 1* 4 8 16 193**

Total number of
gates (normalized)

8,451
(1)

19,335
(2.3)

36,228
(4.3)

67,269
(8.0)

1,646,978
(194.9)

Maximum clock
frequency (MHz)

227 217 217 208 192

Maximum
throughput (Mop/s)

(normalized)

1.18
(1)

4.63
(3.9)

8.68
(7.4)

16
(13.6)

192
(162.7)

Implementation
efficiency (op/s/gate)

(normalized)

140
(1)

239
(1.71)

240
(1.72)

238
(1.7)

117
(0.83)

* the same as the serial MO multiplier
** the same as the parallel MO multiplier

Fig. 6. The block diagram of the inversion unit.

Control
unit

Mul_rst

193

MUX 1 0

193

Sel2

193
δR

(ROR)

193

δL
(ROL)

•
Ror_en

Rol_rn
193

MUX 1 0

193β
Beta_en

193

Sel1

input
• 193 193

• 193 output

Multiplier

shown in Fig. 6. The β register stores the input data of the
inversion unit, the δL and δR registers perform a square root
and a square operation in the finite field, respectively. The
multiplier is a scalable finite field multiplier. The control unit
issues appropriate control signals according to the inversion
algorithm described in section III. The inversion unit can also
be used for multiplication.

Figure 7 presents the implementation efficiency of the
inversion unit according to the operation bits. We used an
inversion unit with an 8-bit operation because it has the best
efficiency. The maximum operation frequency is 217 MHz,
and the maximum throughput is 0.97 Mop/s as a result of post-
synthesis simulation using a 0.35 µm CMOS technology.

Table 2 summarizes the characteristics of the implemented
inversion unit. The inversion unit with the proposed multiplier
takes 2.3 times the area and 7 times the throughput compared

ETRI Journal, Volume 25, Number 5, October 2003 Chanho Lee et al. 319

with the one with a serial MO multiplier. However, the
inversion unit with the parallel MO multiplier takes 88 times
the area and 40 times the throughput compared with the one
with a serial MO multiplier. Table 2 confirms that our proposed
inversion unit is very efficient in implementation compared
with the previous ones. The inversion unit with the proposed
multiplier has 7 times the implementation efficiency compared
with the one with the parallel MO multiplier. This means that
the proposed inversion unit uses 1/7 of the gate counts for the
same throughput as the fully parallel inversion unit.

Fig. 7. The Implementation efficiency of inversion units.

0.45

3.0

2.5

2.0

1.5

1.0

0.5

0.0
1 10 100

Operation bit of multiplier used in inversion unit

Th
ro

ug
hp

ut
 p

er
 g

at
e

(n
or

m
al

iz
ed

)

2.5

2.84 2.97

2.3
2.02

1.59

1

Table 2. Characteristics of inversion units.

Operation digit 1* 4 8 16 193**

Total number of
gates (normalized)

18,896
(1)

30,567
(1.6)

44,019
(2.3)

77,494
(4.1)

1,658,304
(87.8)

Maximum clock
frequency (MHz)

217 217 217 208 179

Maximum
throughput (Mop/s)

(normalized)

0.14
(1)

0.52
(3.72)

0.97
(6.93)

1.63
(11.65)

5.59
(39.93)

Implementation
efficiency (op/s/gate)

(normalized)

7
(1)

17
(2.3)

22
(2.97)

21
(2.84)

3
(0.45)

* the same as the inversion unit with the serial MO multiplier
** the same as the inversion unit with the parallel MO multiplier

V. Conclusion

We presented a scalable finite field multiplier structure for
ECC operation based on a normal basis representation over
GF(2193). The number of output bits of the multiplier can be
freely chosen in the new architecture with the performance area

trade-off depending on the application. Using this architecture,
we designed a 193-bit multiplier and a 193-bit
multiplication/inversion unit. Because the major limiting factor
of the performance of the inversion unit is the number of
multiplication operations, the inversion unit can be designed
with a scalable design area and operation cycles using the
proposed multiplier.

The multiplier and inversion units are designed using Verilog
HDL and implemented using a 0.35 µm CMOS technology.
The multiplier and the inversion unit have up to twice and 7
times the implementation efficiency compared with the
conventional multiplier and inversion units, respectively. The
area performance efficiency of the proposed inversion unit is
much higher than the previous ones.

References

[1] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48, 1987, pp. 203-209.

[2] V. Miller, “Uses of Elliptic Curves in Cryptography,” Advances in
Cryptology – CRYPTO’85, Springer-Verlag, LNCS 218, 1986, pp.
417-726.

[3] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong, “FPGA
Implementation of a Microcoded Elliptic Curve Cryptographic
Processor,” IEEE Symposium on Field Programmable Custom
Computing Machines, 2000, pp. 68-76.

[4] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM, no. 2, 1978, pp. 120-126.

[5] SEC1, Elliptic Curve Cryptography, v.1.0, Sept. 20, 2000, p. 62.
[6] TTAS.KO-12.0015, Digital Signature Mechanism with Appendix

– Part 3: Korean Certificate-Based Digital Signature Algorithm
Using Elliptic Curves, pp. 8-10, 61-70.

[7] A. Lenstra and E. Verheul, “Selecting Cryptographic Key Sizes,”
J. of Cryptology, vol. 14, no. 4, 2001, pp. 255-293.

[8] S. Sutikno, R. Effendi, and A. Surya, “Design and Implementation
of Arithmetic Processor for F2155 for Elliptic Curve
Cryptosystems,” IEEE APCCAS 1998, pp. 647-650.

[9] T. Itoh, O. Teechai, and S. Tsujii, “A fast Algorithm for Computing
Multiplicative Inverses in GF(2m) Using Normal Bases,”
Information and Computation 78, 1988, pp. 171-177.

[10] G.L. Feng, “A VLSI Architecture for Fast Inversion in GF(2m),”
IEEE Trans. Comput., vol. 38, no. 10, Oct. 1989, pp. 1383-1386.

[11] N. Takagi, J. Yoshiki, and K. Takagi, “A Fast Algorithm for
Multiplicative Inversion in GF(2m) Using Normal Basis,” IEEE
Trans. Comput., vol. 50, no. 5, 2001, pp. 394 -398.

[12] J.L. Massey and J.K. Omura, Computational Method and
Apparatus for Finite Field Architecture, U.S. Patent Application,
submitted 1981.

[13] A. Reyhani-Masoleh and M.A. Hasan, “Efficient Digit-Serial
Normal Basis Multipliers over GF(2m),” ISCAS 2002, vol. 5, pp.
781-784.

[14] C.C. Wang, T.K. Trung, H.M. Shao, L.J. Deutsch, J.K. Omura,

320 Chanho Lee et al. ETRI Journal, Volume 25, Number 5, October 2003

and I.S. Reed, “VLSI Architectures for Computing
Multiplications and Inverses in GF(2m),” IEEE Trans. Comput.,
vol. C-34, Aug. 1985, pp. 709-717.

[15] A. Reyhani-Masoleh and M.A. Hasan, “A New Construction of
Massey-Omura Parallel Multiplier over GF(2m),” IEEE Trans.
Comput., vol. 51, no. 5, 2002, pp. 511-520.

[16] Y.R. Shayan and T. Le-Ngoc, “The Least Complex Parallel
Massey-Omura Multiplier and its LCA and VLSI Designs,
Circuits, Devices and Systems,” IEE Proc. G, vol. 136, issue 6,
Dec. 1989, pp. 345-349.

[17] IEEE Standard 1363-2000, IEEE Standard Specifications for
Public-Key Cryptography, p. 110.

[18] L. Song and K.K. Pahri, “Low-Energy Digit-Serial/Parallel Finite
Field Multipliers,” J. of VLSI Signal Processing, vol. 1, no. 22,
1998, pp. 149-166.

Chanho Lee received his BS and the MS
degrees in electronic engineering from Seoul
National University, Seoul, Korea, in 1987 and
in 1989, and the PhD degree from the
University of California, Los Angeles, in 1994.
In 1994, he joined the Semiconductor R&D
Center of Samsung Electronics, Kiheung, Korea.
Since 1995, he has been a faculty member of

the School of Electronic Engineering, Soongsil University, Seoul,
Korea, and he is currently an Associate Professor. His research interests
are channel codec, SoC design methodology, security processors, low
power SoC design, and on-chip networks. He is a Senior Member of
IEEE.

Jeongho Lee received his BS and MS degrees in
electronic engineering from Soongsil University,
Seoul, Korea, in 2001 and 2003. He joined HWA
Sound Source Co. in 2003 and is working on
ASIC design. His research interests are the design
of security modules, microprocessors, and digital
signal processing units.

