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Elliptic curve cryptography (ECC) offers the highest 
security per bit among the known public key cryptosystems. 
The operation of ECC is based on the arithmetic of the 
finite field. This paper presents the design of a 193-bit finite 
field multiplier and an inversion unit based on a normal 
basis representation in which the inversion and the square 
operation units are easy to implement. This scalable 
multiplier can be constructed in a variable structure 
depending on the performance area trade-off. We 
implement it using Verilog HDL and a 0.35 µm CMOS cell 
library and verify the operation by simulation. 
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I. Introduction 

Electronic security has been of considerable interest in 
recent years because of the increase in electronic transactions. 
The developing technology requires a longer key length to 
satisfy higher levels of security. However, as the key length 
becomes longer, the operation time increases even more, as 
does the design complexity and area. Hence, a cryptography 
algorithm with a short key length and a satisfactory security 
level is desirable. 

Elliptic curve cryptography (ECC) offers the highest 
security per bit among the known public key cryptosystems 
[1]-[3]. For example, the RSA system (Rivest, Shamir and 
Adelman) [4] with a 1024-bit key has a security level similar 
to an ECC system with a 160-bit key [5]. The benefit of 
smaller key sizes makes ECC particularly attractive for 
embedded applications since its implementation requires less 
memory and processing power [3]. 

Several standard specifications of ECC recommend an 
elliptic curve over a finite field with a size of 160 bits or more. 
The elliptic curve cryptosystem with a 160-bit modulus is 
expected to be secure for 10 years [6], [7]. We expect that the 
elliptic curve cryptosystem with a 193-bit modulus will be 
secure for 20 years [7]. 

The operation of ECC is based on the arithmetic of the 
finite field. The most frequently used finite field arithmetic 
operations in ECC are addition and multiplication, and the 
most time-consuming finite field arithmetic operation in ECC 
is inversion. The finite field operation can be performed 
based on a polynomial basis representation or a normal basis 
representation. The square operation and inverse operation 
are easy to implement on a normal basis representation [8]. 
The shortcoming of the multiplier based on a normal basis 
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operation is that the binary function for the multiplication 
must be recalculated for different sizes of operands. However, 
since only several ECC systems are commonly used, this 
shortcoming is not significant. 

There are roughly three types of efficient inversion 
algorithm for the normal basis representation. Itoh and Tsujii 
[9] proposed one, G. L. Feng [10] another, and Takagi [11] yet 
another. The performance of the inversion unit in a normal 
basis representation depends on that of the multiplier. There 
are three types of multipliers: the parallel input and serial 
output by Massey and Omura [12] and Reyhani-Masoleh 
[13], the serial input and parallel output by G. L. Feng [10], 
and the parallel input and parallel output by C. C. Wang [14] 
and Reyhani-Masoleh [15]. The first and second types take m 
cycles to obtain the result for m-bit operation. The last one 
needs more than m times the area of the others though it takes 
only 1 cycle to obtain the result. 

In this paper, we propose a new multiplier structure with 
scalable output sizes and operation cycles in GF(2m) using a 
normal basis. The number of output bits can be freely chosen 
in the new architecture with the performance area trade-off 
depending on the application. Using this architecture, we 
designed a 193-bit multiplication/inversion unit with a 
multiplier with an 8-bit output/cycle and a 25 cycle-operation 
time. We implemented it using 0.35 µm CMOS technology 
and verified the operation by simulation. 

II. Multiplier 

A normal basis for GF(2m) is a set of the form 
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The representation of GF(2m) via the normal basis is 
carried out by interpreting the bit string (a0a1a2…am-1) as the 
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In the normal basis representation, A2 is a cyclic shift of A. 
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Let A=(a0a1a2…am-1) and B=(b0b1b2…bm-1) be two 
elements GF(2m) in a normal basis representation and 
C=(c0c1c2…cm-1) be the product. The last term cm-1 of the 
product C is some binary function of the components of A 
and B. 

).,,,;,,,( 1101101 −−− = mmm bbbaaafc ΛΛ       (4) 

 

Fig. 1. Massey-Omura multiplier. 
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Fig. 2. Parallel type Massey-Omura multiplier. 
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The squaring is the same as the cyclic shift and C2=A2×B2, 
and therefore cm-2 is obtained using the same binary function as 
that used to obtain cm-1 except that the components of A and B 
are rotated. 

).,,,;,,,( 2012012 −−−−− = mmmmm bbbaaafc ΛΛ      (5) 

Other terms of the product can be obtained using the same 
binary function as shown below. 
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Equation (6) defines the serial Massey-Omura (MO) 
multiplier [11]. Figure 1 depicts the block diagram of the 
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serial MO multiplier in GF(25). 
The serial MO multiplier is the serial-output type, and it takes 

m clock to obtain all the terms of the product. The parallel-
output multiplier can be implemented using m binary function 
logic units in 1 cycle. However, it needs more than m times the 
area. Figure 2 shows the parallel multiplier in GF(25) [16]. 

Equation (4) can be rewritten as shown below using a 
number, n (n is an integer, 1≤n≤m): 
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where  nmk /1 =−  and .rnkm +⋅=  An m-bit multiplier 
can be implemented using n binary F-function logic units and n-
bit cyclic shift LFSRs if C is partitioned into subsets with n 
elements as shown in (7). The complexity of an F-function logic 
unit depends on the generator polynomial and m. The product 
can be obtained in  nm /  cycles. Figure 3 gives the block 
diagram of the proposed multiplier in GF(25). 
 

 

Fig. 3. Proposed 5-bit multiplier with n=2. 
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III. Inversion Unit 

Among the three types of inversion algorithm, the 
inversion unit by G. L. Feng is preferred for implementation 

because of the smaller multiplication count for 193-bit 
operations. The inversion unit in GF(2m) is designed according 
to the algorithm by G. L. Feng as shown below [10]. 

Step 1       δ: = β 
Step 2       for i=q to 1 do 
Step 3       begin 

if mi=1 then δ := (δ)2-2i
 

Step 4           δ: = δ×(δ)22i-1
 

Step 5           if mi-1=1 then δ: = δ×β 
            end 

Step 6       β-1: = (δ)2m-m0 

where mqmq-1…m0 is the binary expression of the number 
m–1 and β is the input of the inversion. For i (1 ≤ i ≤ q), step 3, 
step 4, and step 5 are executed. For example, if m=193 then 
m–1 =192 =(11000000)2 =(m7m6m5m4m3m2m1m0)2 and 

q=7. (δ)2-2i
 denotes the 2i bit cyclic left shift of δ and (δ)22i-1 

denotes the 2i-1 bit cyclic right shift of δ. Finally, if m0=1, the 1 
bit cyclic left shift of δ is the final result, and otherwise, δ is the 
final result. 

IV. Implementation 

We use the trinomial 1)( 15193 ++= xxxf  that is 
recommended in IEEE standard 1363 [17] for a generator 
polynomial, and the F-function consists of roughly 4m AND 
and XOR gates. The multiplier and inversion unit are 
implemented using a 0.35 µm CMOS technology and Verilog 
HDL. 

We implement a multiplier that is operated with 8 bits per 
cycle because the implementation efficiency is the best. The 
block diagram of the implemented multiplier is shown in 
Figure 4. The operation bit per cycle of the multiplier can be 
changed easily by modifying the parameters of the HDL code. 

 

Fig. 4. The block diagram of the m=193-bit multilpier. 
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Figure 5 shows the implementation efficiency of the multiplier 
according to the operation digit. The implementation efficiency 
of a multiplier is defined as the ratio of the throughput and the 
gate count in the unit of a 2-input NAND gate, which means the 
number of operations per gate per second in a structure. The 193-
bit scalable multiplier units with various operation digits are 
synthesized using Synopsys tools and a 0.35 µm CMOS 
technology. Gate counts, operating frequencies, throughputs, and 
implementation efficiencies are analyzed according to the 
synthesis results. The implementation efficiencies are calculated 
using the throughputs and the gate counts for various n. High 
implementation efficiency means that an operation unit is 
implemented with a smaller gate count for the same throughput. 
A multiplier with an 8-bit operation has the best implementation 
efficiency. The maximum operation frequency is 217 MHz, and 
the maximum throughput is 7.4 million operations per second 
(Mop/s). 
 

 

Fig. 5. The implemetation efficiency of multipliers. 
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Table 1 presents a summary of the characteristics of the 
implemented multiplier. The proposed multiplier with an 8-bit 
operation per cycle takes 4 times the area and 7 times the 
throughput compared with the serial MO multiplier. However, 
the parallel MO multiplier takes 195 times the area and 163 
times the throughput compared with the serial MO multiplier. 
Table 1 confirms that our proposed multiplier is more efficient 
in implementation than the previous ones. The operation 
frequency degrades due to the increased load though the 
operation frequency should be the same in principle since the 
same F-functions are employed. The proposed multiplier with 
an 8-bit operation per cycle has twice the implementation 
efficiency of the parallel MO multiplier. Another paper 
presented a similar approach of a configurable structure of 
multiplier using the polynomial basis in which decomposing a 
structure was relatively easy [18]. 

The block diagram of the implemented inversion unit is 

Table 1. Characteristics of multipliers. 

Operation digit 1* 4 8 16 193** 

Total number of 
gates (normalized)

8,451
(1) 

19,335 
(2.3) 

36,228 
(4.3) 

67,269
(8.0) 

1,646,978
(194.9) 

Maximum clock 
frequency (MHz)

227 217 217 208 192 

Maximum 
throughput (Mop/s) 

(normalized) 

1.18 
(1) 

4.63 
(3.9) 

8.68 
(7.4) 

16 
(13.6) 

192 
(162.7) 

Implementation 
efficiency (op/s/gate)

(normalized) 

140 
(1) 

239 
(1.71) 

240 
(1.72) 

238 
(1.7) 

117 
(0.83) 

*   the same as the serial MO multiplier 
**  the same as the parallel MO multiplier 

 
 

Fig. 6. The block diagram of the inversion unit. 
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shown in Fig. 6. The β register stores the input data of the 
inversion unit, the δL and δR registers perform a square root 
and a square operation in the finite field, respectively. The 
multiplier is a scalable finite field multiplier. The control unit 
issues appropriate control signals according to the inversion 
algorithm described in section III. The inversion unit can also 
be used for multiplication. 

Figure 7 presents the implementation efficiency of the 
inversion unit according to the operation bits. We used an 
inversion unit with an 8-bit operation because it has the best 
efficiency. The maximum operation frequency is 217 MHz, 
and the maximum throughput is 0.97 Mop/s as a result of post-
synthesis simulation using a 0.35 µm CMOS technology. 

Table 2 summarizes the characteristics of the implemented 
inversion unit. The inversion unit with the proposed multiplier 
takes 2.3 times the area and 7 times the throughput compared 
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with the one with a serial MO multiplier. However, the 
inversion unit with the parallel MO multiplier takes 88 times 
the area and 40 times the throughput compared with the one 
with a serial MO multiplier. Table 2 confirms that our proposed 
inversion unit is very efficient in implementation compared 
with the previous ones. The inversion unit with the proposed 
multiplier has 7 times the implementation efficiency compared 
with the one with the parallel MO multiplier. This means that 
the proposed inversion unit uses 1/7 of the gate counts for the 
same throughput as the fully parallel inversion unit. 
 

 

Fig. 7. The Implementation efficiency of inversion units. 
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Table 2. Characteristics of inversion units. 

Operation digit 1* 4 8 16 193** 

Total number of 
gates (normalized) 

18,896 
(1) 

30,567 
(1.6) 

44,019 
(2.3) 

77,494
(4.1) 

1,658,304
(87.8) 

Maximum clock 
frequency (MHz) 

217 217 217 208 179 

Maximum 
throughput (Mop/s) 

(normalized) 

0.14 
(1) 

0.52 
(3.72)

0.97 
(6.93) 

1.63 
(11.65)

5.59 
(39.93) 

Implementation 
efficiency (op/s/gate) 

(normalized) 

7 
(1) 

17 
(2.3) 

22 
(2.97) 

21 
(2.84)

3 
(0.45) 

*   the same as the inversion unit with the serial MO multiplier 
**  the same as the inversion unit with the parallel MO multiplier 

 

V. Conclusion 

We presented a scalable finite field multiplier structure for 
ECC operation based on a normal basis representation over 
GF(2193). The number of output bits of the multiplier can be 
freely chosen in the new architecture with the performance area 

trade-off depending on the application. Using this architecture, 
we designed a 193-bit multiplier and a 193-bit 
multiplication/inversion unit. Because the major limiting factor 
of the performance of the inversion unit is the number of 
multiplication operations, the inversion unit can be designed 
with a scalable design area and operation cycles using the 
proposed multiplier. 

The multiplier and inversion units are designed using Verilog 
HDL and implemented using a 0.35 µm CMOS technology. 
The multiplier and the inversion unit have up to twice and 7 
times the implementation efficiency compared with the 
conventional multiplier and inversion units, respectively. The 
area performance efficiency of the proposed inversion unit is 
much higher than the previous ones. 

References 

[1] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of 
Computation, vol. 48, 1987, pp. 203-209. 

[2] V. Miller, “Uses of Elliptic Curves in Cryptography,” Advances in 
Cryptology – CRYPTO’85, Springer-Verlag, LNCS 218, 1986, pp. 
417-726. 

[3] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong, “FPGA 
Implementation of a Microcoded Elliptic Curve Cryptographic 
Processor,” IEEE Symposium on Field Programmable Custom 
Computing Machines, 2000, pp. 68-76. 

[4] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for 
Obtaining Digital Signatures and Public-Key Cryptosystems,” 
Communications of the ACM, no. 2, 1978, pp. 120-126. 

[5] SEC1, Elliptic Curve Cryptography, v.1.0, Sept. 20, 2000, p. 62. 
[6] TTAS.KO-12.0015, Digital Signature Mechanism with Appendix 

– Part 3: Korean Certificate-Based Digital Signature Algorithm 
Using Elliptic Curves, pp. 8-10, 61-70. 

[7] A. Lenstra and E. Verheul, “Selecting Cryptographic Key Sizes,” 
J. of Cryptology, vol. 14, no. 4, 2001, pp. 255-293. 

[8] S. Sutikno, R. Effendi, and A. Surya, “Design and Implementation 
of Arithmetic Processor for F2155 for Elliptic Curve 
Cryptosystems,” IEEE APCCAS 1998, pp. 647-650. 

[9] T. Itoh, O. Teechai, and S. Tsujii, “A fast Algorithm for Computing 
Multiplicative Inverses in GF(2m) Using Normal Bases,” 
Information and Computation 78, 1988, pp. 171-177. 

[10] G.L. Feng, “A VLSI Architecture for Fast Inversion in GF(2m),” 
IEEE Trans. Comput., vol. 38, no. 10, Oct. 1989, pp. 1383-1386. 

[11] N. Takagi, J. Yoshiki, and K. Takagi, “A Fast Algorithm for 
Multiplicative Inversion in GF(2m) Using Normal Basis,” IEEE 
Trans. Comput., vol. 50, no. 5, 2001, pp. 394 -398. 

[12] J.L. Massey and J.K. Omura, Computational Method and 
Apparatus for Finite Field Architecture, U.S. Patent Application, 
submitted 1981. 

[13] A. Reyhani-Masoleh and M.A. Hasan, “Efficient Digit-Serial 
Normal Basis Multipliers over GF(2m),” ISCAS 2002, vol. 5, pp. 
781-784. 

[14] C.C. Wang, T.K. Trung, H.M. Shao, L.J. Deutsch, J.K. Omura, 



320   Chanho Lee et al. ETRI Journal, Volume 25, Number 5, October 2003 

and I.S. Reed, “VLSI Architectures for Computing 
Multiplications and Inverses in GF(2m),” IEEE Trans. Comput., 
vol. C-34, Aug. 1985, pp. 709-717. 

[15] A. Reyhani-Masoleh and M.A. Hasan, “A New Construction of 
Massey-Omura Parallel Multiplier over GF(2m),” IEEE Trans. 
Comput., vol. 51, no. 5, 2002, pp. 511-520. 

[16] Y.R. Shayan and T. Le-Ngoc, “The Least Complex Parallel 
Massey-Omura Multiplier and its LCA and VLSI Designs, 
Circuits, Devices and Systems,” IEE Proc. G, vol. 136, issue 6, 
Dec. 1989, pp. 345-349. 

[17] IEEE Standard 1363-2000, IEEE Standard Specifications for 
Public-Key Cryptography, p. 110. 

[18] L. Song and K.K. Pahri, “Low-Energy Digit-Serial/Parallel Finite 
Field Multipliers,” J. of VLSI Signal Processing, vol. 1, no. 22, 
1998, pp. 149-166. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chanho Lee received his BS and the MS 
degrees in electronic engineering from Seoul 
National University, Seoul, Korea, in 1987 and 
in 1989, and the PhD degree from the 
University of California, Los Angeles, in 1994. 
In 1994, he joined the Semiconductor R&D 
Center of Samsung Electronics, Kiheung, Korea. 
Since 1995, he has been a faculty member of 

the School of Electronic Engineering, Soongsil University, Seoul, 
Korea, and he is currently an Associate Professor. His research interests 
are channel codec, SoC design methodology, security processors, low 
power SoC design, and on-chip networks. He is a Senior Member of 
IEEE. 
 

Jeongho Lee received his BS and MS degrees in 
electronic engineering from Soongsil University, 
Seoul, Korea, in 2001 and 2003. He joined HWA 
Sound Source Co. in 2003 and is working on 
ASIC design. His research interests are the design 
of security modules, microprocessors, and digital 
signal processing units. 


