• 제목/요약/키워드: Finite Feedback

검색결과 195건 처리시간 0.031초

고유구조지정법을 이용한 유연구조물의 스필오버 억제방법 (A Spillover Suppression Method in a Flexible Structure Using Eigenstructure Assignment)

  • 최재원;박운식
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.955-962
    • /
    • 2000
  • Although large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional systems, they have to be modeled into a lumped parameter and large finite-dimensional system for control system design. Besides, there remains the fundamental problem that the modeled large finite-dimensional system must be controled with a much smaller dimensional controller due to the limitation of computing resources. This causes the spillover phenomenon which degrades control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we propose a novel spillover suppression method in the active vibration control of large flexible structures by using eigenstructure assignment. Its validity and effectiveness are investigated and verified by the numerical experiments using a simply supported flexible beam, which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

s-FEM을 이용한 변형체 햅틱 시뮬레이션 (Haptic Simulation for Deformable Object with s-FEM)

  • 전성기;최진복;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.373-380
    • /
    • 2006
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction 'with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

능동구속감쇠 기법을 이용한 보의 진동제어 실험 (Experiment on Vibration Control of Beam Using Active Constrained-Layer Damping Treatment)

  • 강영규;최진영;김재환
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.52-57
    • /
    • 2001
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design a structure with maximum possible damping capacity. Piezoelectric film is used as a sensor and piezoceramic as an actuator for the negative velocity feedback control. The experimental results are compared with those by the finite element analysis. This paper shows the effectiveness of active constrained-layer damping treatment through experiments, and we have carried out an experiment to study the effect of beam thickness.

  • PDF

고유구조지정법을 이용한 유연구조물의 스필오버억제 (Spillover Suppression in a Flexible Structure using Eigenstructure Assignment)

  • 박운식;최재원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.499-504
    • /
    • 2000
  • Since large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional system, they have to be modeled into large finite-dimensional systems for control system design. Besides, there are fundamental problems in active vibration control of the large flexible structures. For example, a modeled large finite-dimensional system must be controlled with a much smaller dimensional controller. This causes the spillover phenomenon which degrades the control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we proposed a novel control method for spillover suppression in the control of large flexible structures by using eigenstructure assignment. Its effectiveness in spillover suppression is investigated and verified by the numerical experiments using an example of the simply supported flexible beam which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

래칫 휠의 자동설계와 유한요소해석을 이용한 검증에 관한 연구 (A Study on the Verification Using Finite Element Analysis and Automatic Design of Ratchet Wheel)

  • 김민주;이승수;전언찬
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.45-50
    • /
    • 2002
  • This study is an investigation far the Am optimum design using FEA. We write out program which express ADS perfectly and reduce the required time far correcting of model to the minion in solution md manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. Then we contract model by feedbback date obtaining in solution process, repeat course following stress solution again iud do modeling rachet wheel for optimum forming. That is our aim. In cachet wheel, greatest equivalence strss originates in key groove comer and KS standard is proved the design far security.

차분 래티스볼츠만법에 Subgrid 난류모델의 적용 (Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method)

  • 강호근;안수환;김정환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어 (Dynamic Modeling and Vibration Control of Smart Hull Structure)

  • 손정우;김흥수;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

접촉상태에 있는 초정밀 역전방지클러치의 내구성 평가에 관한 연구 (A Study on Endurance Estimation of ultra Precision Reverse-Locking Clutches under Contact Condition)

  • 서정세;이석순;이태선;최중환;이상범
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.47-54
    • /
    • 2005
  • A dangerous event occurred at the field industry and mechanical system. At developed by SUNGGOKNANOTECH corp. a R-L clutches of a small and high capacity serves safety device from a variety environment of mechanical system, it permits transmission of driving torque from input to output shaft in both directions of rotation, but restrains any feedback torque of the driven load from rotating the output shaft in either direction. This study was carried out to demonstrate through finite element method and durability estimation for safety of the R-L clutches without sliding during the engagement process. As results, we organized about endurance test method when applied rated torque.

스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어 (Dynamic Modeling and Vibration Control of Smart Hull Structure)

  • 손정우;김흥수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.840-847
    • /
    • 2006
  • Dynamic modelingand active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuators are conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation

  • Malgaca, L.;Karagulle, H.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.55-68
    • /
    • 2009
  • In the present study, active control of a smart beam under forced vibration is analyzed. The aluminum smart beam is composed of two piezoelectric patches and strain gauge. One of the piezoelectric patches is used as controlling actuator while the other piezoelectric patch is used as vibration generating shaker. The smart beam is harmonically excited by the piezoelectric shaker at its fundamental frequency. The strain gauge is utilized to sense the vibration level. Active vibration reduction under harmonic excitation is achieved using both strain and displacement feedback control. Control actions, the finite element (FE) modeling and analyses are directly carried out by using ANSYS parametric design language (APDL). Experimental applications are performed with LabVIEW. Dynamic behavior at the tip of the beam is evaluated for the uncontrolled and controlled responses. The simulation and experimental results are compared. Good agreement is observed between simulation and experimental results under harmonic excitation.