• 제목/요약/키워드: Finite Elements

검색결과 2,687건 처리시간 0.028초

혼합유한요소를 통한 다공질매체의 요소분리해석 (Analysis of Debonding between Mixed Finite Elements for Saturated Porous Media)

  • 탁문호;이장근;반호기;강재모
    • 한국지반환경공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.53-58
    • /
    • 2017
  • 본 연구에서는 ABAQUS(2014)를 이용한 다공질 매체의 혼합유한요소해석에서 요소 간의 분리를 모사할 수 있는 방법을 제안한다. ABAQUS에서는 변위과 간극수압(u-p모델)의 자유도를 갖는 혼합유한요소의 분리를 standard(implicit) 버전 상에서 cohesive element와 함께 해석을 제안하지만, 요소 간의 이탈, 강체운동, 접촉 등과 같은 분리현상에 대해서는 경계조건 문제로 수치 해석상 한계가 있다. ABAQUS-explicit 해석에서는 경계조건 문제에 대해 자유롭지만 지금까지의 혼합요소 간의 분리를 제공하고 있지 않다. 그러므로, 본 연구에서는 ABAQUS-explicit 상에서 u-p 모델에 대한 분리를 모사할 수 있는 새로운 접근방법이 제안된다. VUMAT 서브루틴을 통하여 구성모델이 적용되고, 간극수압 변화에 따른 요소의 분리 조건을 판단한다. 그리고 VDISP 서브루틴을 통하여 요소의 분리를 발생시킨다. 이렇게 제안된 알고리즘은 간단한 2차원 다공질 매체 예제를 통하여 구현된다.

유사 평면변형률 유한요소를 사용한 실린더 문제의 해석 (Finite Element Analyses of Cylinder Problems Using Pseudo-General Plane Strain Elements(Planar Constraint))

  • 권영두;권현욱;신상목;이찬복
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.66-75
    • /
    • 2003
  • Long cylinder, subjected to internal pressure, is important in the analysis and design of nuclear fuel rod structures. In many cases, long cylinder problems have been considered as a plane strain condition. However, strictly speaking, long cylinder problems are not plane strain problems, but rather a general plane strain (GPS) condition, which is a combination of a plane strain state and a uniform strain state. The magnitude of the uniform axial strain is required, in order to make the summation of the axial force zero. Although there has been the GPS element, this paper proposes a general technique to solve long cylinder problems, using several pseudo-general plane strain (PGPS) elements. The conventional GPS elements and PGPS elements employed are as follows: axisymmetric GPS element (GA3), axisymmetric PGPS element (PGA8/6), 2-D GPS element (GIO), 3-D PGPS element (PG20/16), and reduced PGPS elements (RPGA6, RPG20/16). In particular, PGPS elements (PGA8/6, PG20/16) can be applied in periodic structure problems. These finite elements are tested, using several kinds of examples, thereby confirming the validity of the proposed finite element models.

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구 (A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method)

  • 이상열;임성순;장석윤
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF

효율적 유한요소 생성을 위한 미소 기하 특징 소거 (Geometric Detail Suppression for the Generation of Efficient Finite Elements)

  • 이용구;이건우
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.175-185
    • /
    • 1997
  • Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.

  • PDF

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용 (A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process)

  • 정동원;양동열
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링 (Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method)

  • 장동환;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

FE simulation of S-N curves for a riveted connection using two-stage fatigue models

  • Correia, Jose A.F.O.;de Jesus, Abilio M.P.;Silva, Antonio L.L.;Pedrosa, Bruno;Rebelo, Carlos;Calcada, Rui A.B.
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.333-348
    • /
    • 2017
  • Inspections of ancient metallic bridges have illustrated fatigue cracking in riveted connections. This paper presents a comparison between two alternative finite element (FE) models proposed to predict the fatigue strength of a single shear and single rivet connection. The first model is based on solid finite elements as well as on contact elements, to simulate contact between the components of the connection. The second model is built using shell finite elements in order to model the plates of the riveted connection. Fatigue life predictions are carried out for the shear splice, integrating both crack initiation and crack propagation lives, resulting from the two alternative FE models. Global fatigue results, taking into account several clamping stresses on rivet, are compared with available experimental results. Proposed comparisons between predictions and experimental data illustrated that the proposed two-stage model yields consistent results.