• Title/Summary/Keyword: Finite Element-Transfer Matrix Method

Search Result 81, Processing Time 0.029 seconds

FETM을 이용한 다자유도 회전체 시스템의 진동해석

  • 김승현;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.818-821
    • /
    • 1995
  • A MDOF vibration analysis of the rotor is performed using combined modeling of transfer matrix method and finite element method(FETM). The method combines the advantages of both matrix. Each rotor is modelled using transfer matrix method and treated one element or several ones. The finite element method is applied in composing a system matrix and finding roots. The method used in this is more efficient than conventional finite element method in saving calculation time and provides good results in complex MDOF rotor model.

  • PDF

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

Geometrically non-linear dynamic analysis of plates by an improved finite element-transfer matrix method on a microcomputer

  • Chen, YuHua
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.395-402
    • /
    • 1994
  • An improved finite element-transfer matrix method is applied to the transient analysis of plates with large displacement under various excitations. In the present method, the transfer of state vectors from left to right in a combined finite element-transfer matrix method is changed into the transfer of generally incremental stiffness equations of every section from left to right. Furthermore, in this method, the propagation of round-off errors occurring in recursive multiplications of transfer and point matrices is avoided. The Newmark-${\beta}$ method is employed for time integration and the modified Newton-Raphson method for equilibrium iteration in each time step. An ITNONDL-W program based on this method using the IBM-PC/AT microcomputer is developed. Finally numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for dynamic large deflection analysis of plates with random boundaries under various excitations.

Modified finite element-transfer matrix method for the static analysis of structures

  • Ozturk, D.;Bozdogan, K.;Nuhoglu, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper the Modified Finite Element-Transfer Matrix Method, which is the combination of Transfer Matrix Method and Finite Element Method, is applied to the static analysis of the structures. In the method, the structure is divided into substructures thus the number of unknowns that need to be worked out is reduced due to the transformation process. The static analysis of the structures can be performed easily and speedily by the proposed method. At the end of the study examples are presented for ensuring the agreement between the proposed method and classic Finite Element Method.

A combined finite element-Riccati transfer matrix method for free vibration of structures

  • Xue, Huiyu
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.245-253
    • /
    • 1995
  • A combination of Riccati transfer matrix method and finite element method is proposed for obtaining vibration frequencies of structures. This method reduces the propagation of round-off errors produced in the standard transfer matrix method and finds out the values of the frequency by Newton-Raphson method. By this technique, the number of nodes required in the regular finite element method is reduced and therefore a microcomputer may be used. Besides, no plotting of the value of the determinant versus assumed frequency is necessary. As the application of this method, some numerical examples are presented to demonstrate the accuracy as well as the capability of the proposed method for the vibration of structures.

Vibration Analysis of 3-Dimensional Structure by using Mixed Method of Finite Element-Transfer Matrix (유한요소-전달행렬의 혼합물을 이용한 3차원 구조물의 진동해석)

  • 이동명
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • In this study for reduction degree of freedom of dynamic model, a mixed method to combined finite element method and transfer matrix method is presented. This offers the advantages of an automatic reduction in the size of the eigenvalues problem and of a straightforward means of dynamic substructuring. The analytical procedure in this method for dynamic analysis of 3-dimensional cantilevered box beam are described. the result of numerical example is shown to demonstate the efficiency and accuracy of this method. The result form this example agree well those obtained by ANSYS, By using this technique, the number of nodes required in the regular finite element method is reduced and therefore a smaller com-puter can be used.

  • PDF

An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method (전달행렬법에 의한 반구 원통형 쉘구조의 해석)

  • 김용희;이윤영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.

Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element-transfer matrix method

  • Bozdogan, Kanat B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this study, the modified finite element- transfer matrix methods are proposed for free vibration analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a multi-storey structure is divided into as many elements as the number of storeys and storey masses are influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix is constructed in the dimension of $6{\times}6$ by transforming the obtained stiffness matrix. Thus, the dimension, which is $12n{\times}12n$ in classical finite elements, is reduced to the dimension of $6{\times}6$. To study the suitability of the method, the results are assessed by solving two examples taken from the literature.

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

A Hybrid Method for Vibration Analysis of Rotor Systems (회전축계의 진동해석을 위한 Hybrid법에 관한 연구)

  • 양보석;최원호
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • The simplest method which has been used extensively for vibration analysis is the transfer matrix method introduced by Myklestad and was later extended by many researchers. The crude approximation results in considerable error on the predicted natural frequencies and to increase the accuracy the number of elements used in the analysis must be increased. In addition, numerical instability can occur as a result of matrix multiplication. Also the main disadvantage of the finite element method is the large computer memory requirements for complex systems. The new method proposed in this paper combines the transfer matrix and finite dynamic element techniques to form a powerful algorithm for vibration analysis of rotor system. It is shown that the accuracy improves significantly when the transfer matrix for each segment is obtained from finite dynamic element techniques.

  • PDF