• Title/Summary/Keyword: Finite Element Method(FEM)

Search Result 3,147, Processing Time 0.032 seconds

Boosting the Performance of Python-based Geodynamic Code using the Just-In-Time Compiler (Just-In-Time 컴파일러를 이용한 파이썬 기반 지구동역학 코드 가속화 연구)

  • Park, Sangjin;An, Soojung;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.2
    • /
    • pp.35-44
    • /
    • 2021
  • As the execution speed of Python is slower than those of other programming languages (e.g., C, C++, and FORTRAN), Python is not considered to be efficient for writing numerical geodynamic code that requires numerous iterations. Recently, many computational techniques, such as the Just-In-Time (JIT) compiler, have been developed to enhance the calculation speed of Python. Here, we developed two-dimensional (2D) numerical geodynamic code that was optimized for the JIT compiler, based on Python. Our code simulates mantle convection by combining the Particle-In-Cell (PIC) scheme and the finite element method (FEM), which are both commonly used in geodynamic modeling. We benchmarked well-known mantle convection problems to evaluate the reliability of our code, which confirmed that the root mean square velocity and Nusselt number obtained from our numerical modeling were consistent with those of the mantle convection problems. The matrix assembly and PIC processes in our code, when run with the JIT compiler, successfully achieved a speed-up 30× and 258× faster than without the JIT compiler, respectively. Our Python-based FEM-PIC code shows the high potential of Python for geodynamic modeling cases that require complex computations.

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System (레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.107-111
    • /
    • 2020
  • Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Optimal Design of a Coil for Improved Heating Efficiency of Electric Induction Boiler (전기유도보일러의 발열효율개선을 위한 권선최적설계)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.476-482
    • /
    • 2019
  • Regulatory protocols such as the Convention on Climate Change and the regulation of greenhouse gas emissions act as catalysts for the development of high-efficiency energy equipment and the efficient use of energy. Among the fields where energy consumption is high, the electric heating equipment is not efficient. The electric boiler mainly uses a method of circulating water by contacting the heater. When the existing electric boiler is used, the water minerals are contacted with the high-temperature heater to be carbonized and adsorbed, thereby promoting the corrosion of the heater and lowering the efficiency of the heater. For this reason, an electric induction boiler, which has high energy efficiency and is applied to an induction heating system that can uniformly heat the object to be heated rather than conduction or convection heating, is in the limelight. This method induces a boiler pipe And it is recognized as an alternative that can solve the problem that occurs when heating is performed by direct heating. Despite the fact that research on induction heating has been conducted for a relatively long period of time, there have been few studies on the electrothermal technology using induction heating. Therefore, in this paper, to improve the heat efficiency of electric induction boiler, the influence of the cross sectional area, number of windings and winding layers is analyzed by finite element method through parametric study method. The method of finding the design point which maximizes the total loss is proposed by the alternating winding design method which can maximize the heat generation by analyzing copper and iron losses.

A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method (임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구)

  • Kim, Yeon-Soo;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF

Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis (치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석)

  • Park, Jong-Chan;Shin, Sang-Wan;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.479-489
    • /
    • 2008
  • Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

Quasi-Three Dimensional Stability Analysis of the Geosynthetic-Reinforced Soil Retaining Wall System (GRS-RW 보강토벽체 공법의 준3차원 안정해석)

  • 김홍택;박준용
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.177-204
    • /
    • 1998
  • In the present study, a method of quasi-three dimensional stability analysis is proposed for a systematic design of the GRS-RW(Geosynthetic-Reinforced Soil Retaining Wall) system based on the postulated three dimensional failure wedge. The proposed method could be applied to the analysis of the stability of both the straight-line and cove-shaped are. As with skew reinforcements. Maximum earth thrust expected to act on the rigid face wall is assumed to distribute along the depth, and wall displacements are predicted based on both the assumed compaction-induced earth pressures and one dimensional finite element method of analysis. For a verification of the procedure proposed in the present study, the predicted wall displacements are compared with chose obtained from the RMC tests in Canada and the FHWA tests in U.S.A. In these comparisons the wall displacements estimated by the methods of Christopher et at. and Chew & Mitchell are also included for further verification. Also, the predicted wall displacements for the convex-shaped zone reinforced with skew reinforcements are compared with those by $FLAC_{3D}$ program analyses. The assumed compaction-induced earth pressures evaluated on the basic of the proposed method of analysis are further compared with the measurements by the FHWA best wall. A parametric stduy is finally performed to investigate the effects of various design parameters for the stability of the GRS-RW system

  • PDF

A Study of Reliability of Predictive Models for Permanent Deformation and Fatigue Failure Related to Flexible Pavement Design (연성포장설계의 소성변형과 피로파괴 예측모델에 대한 신뢰성 연구)

  • Kim, Dowan;Han, Beomsoo;Kim, Yeonjoo;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.105-113
    • /
    • 2014
  • PURPOSES: The objective of this paper is to select the confidential intervals by utilizing the second moment reliability index(Hasofer and Lind; 1974) related to the number of load applications to failure which explains the fatigue failure and rut depth that it indicates the permanent deformation. By using Finite Element Method (FEM) Program, we can easily confirm the rut depth and number of load repetitions without Pavement Design Procedures for generally designing pavement depths. METHODS : In this study, the predictive models for the rut depth and the number of load repetitions to fatigue failure were used for determining the second moment reliability index (${\beta}$). From the case study results using KICTPAVE, the results of the rut depth and the number of load repetitions to fatigue failure were deducted by calculating the empirical predictive equations. Also, the confidential intervals for rut depth and number of load repetitions were selected from the results of the predictive models. To determine the second moment reliability index, the spreadsheet method using Excel's Solver was used. RESULTS : From the case studies about pavement conditions, the results of stress, displacement and strain were different with depth conditions of layers and layer properties. In the clay soil conditions, the values of strain and stresses in the directly loaded sections are relatively greater than other conditions. It indicates that the second moment reliability index is small and confidential intervals for rut depth and the number of load applications are narrow when we apply the clay soil conditions comparing to the applications of other soil conditions. CONCLUSIONS : According to the results of the second moment reliability index and the confidential intervals, the minimum and maximum values of reliability index indicate approximately 1.79 at Case 9 and 2.19 at Case 22. The broadest widths of confidential intervals for rut depth and the number of load repetitions are respectively occurred in Case 9 and Case 7.

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.