• Title/Summary/Keyword: Finite Element Impact Analysis

Search Result 785, Processing Time 0.03 seconds

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm

  • Nguyen, Khanh-Hung;Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.

A Simulation for the Impact Response Analysis of a Motor Cycle Helmet (시뮬레이션에 의한 오토바이 헬멧의 충격 응답 분석)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.25-31
    • /
    • 1999
  • To analyze the impulsive response of a motorcycle helmet, a simulation is performed using the finite element method. Based upon the simulation result, an equivalent one degree of freedom vibrational system is adapted, and transient impulsive responses are analysed to investigate the influence of engineering parameters such as damping, natural frequency, and impact velocity on the impulsive response of the helmet. Maximum gravitational acceleration reduces as the damping factor value increases. When the damping factor value is around 0.6 or larger, the maximum acceleration does not change. With respect to the natural frequency and the impact velocity, it increases linearly. The relationship between head injury criterion(HIC) and maximum gravitational acceleration is also presented. The scheme of this study is expected to be utilized to economize the design process of high quality motorcycle helmets.

  • PDF

Dynamic Behaviors of the Impact Damper and the Accelerated Mass Loading (충격 댐퍼의 동특성과 가속 질량추가 현상에 대한 연구)

  • Wang, Se-Myung;Park, Jong-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.396-401
    • /
    • 2006
  • Dynamic behaviors of the impact damper are studied experimentally and numerically. In order to investigate wide range of excitation frequencies and amplitudes, a simple but high amplifying and bias-free experimental setup is designed. Experiments focused on the harsh operation condition demonstrate Accelerated mass loading which not only deteriorates the performance of the impact damper but also involves the structural resonance which should be avoided for the stability of the system. In the previous studies, instability or deterioration of the performance was reported for the off resonance frequency region. But this paper shows that the performance deterioration and structural resonances can be predicted. Using finite element modeling and analysis, accurate system parameters were derived and used for the numerical modeling employing the conservation of the momentum. Numerical study of the transient responses using 4th-order Runge-Kutta method demonstrates general performance of the system, and shows that accelerated mass loading phenomenon is deeply related with the vibration amplitudes and the mass of the auxiliary system.

  • PDF

A Study of Failure Mechanism for Inclined Impact of PELE (PELE의 경사진 충격에 따른 파괴 메커니즘에 대한 연구)

  • Jo, Jong-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.712-719
    • /
    • 2012
  • Penetrator with enhanced lateral effect(PELE) is a newconcept projectile, without dynamite and fuze. It consists of high-density jacket, closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE, by AUTODYN-3D code, the calculation models of projectile body and bullet target are established and the process of penetrating aluminum-2024 alloy target of PELE is simulated, and the scattering characteristics after penetrating aluminum-2024 alloy target of PELE are studied by different initial velocity. The explicit finite element analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. As expansion of filling, the fragments were obtained velocities and dispersed laterally and further more enhancing the damage area largely. The number and shape of the PELE fragments were different depend on impact velocity and incidence angle of filling which fragment generated during penetration and lateral dispersion process.

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong;Yan, Qun;Li, Xiang
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.159-172
    • /
    • 2014
  • A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.

Investigation on Effect of Aircraft Engine Crash Location on Containment Performance of a Spent Nuclear Fuel Transport Cask (사용후연료 운반용기의 격납 성능에 미치는 항공기 엔진 충돌위치의 영향 고찰)

  • Jong-Sung Kim;Chang Jong Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2023
  • The paper presents the results investigating the effect of aircraft engine impact location on the intended function evaluation results of spent nuclear fuel transport cask. As a result of the investigation, it is found that the structural integrity is maintained as the maximum accumulated equivalent plastic strain is below the acceptable criterion regardless of the collision location. It is identified that when the aircraft engine collided with the upper part of the transport cask without considering impact limiter the containment performance is weakened compared to when the aircraft engine collided with the central part.

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.

Static and dynamic load superposition in spacecraft structural analysis

  • Vaquer-Araujo, Xavier;Schottle, Florian;Kommer, Andreas;Konrad, Werner
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.259-275
    • /
    • 2018
  • In mechanical analysis of spacecraft structures situations appear where static and dynamic loads must be considered simultaneously. This could be necessary either by load definition or preloaded structures. The superposition of these environments has an impact on the load and stress distribution of the analysed structures. However, this superposition cannot be done by adding both load contributions directly. As an example, to compute equivalent Von Mises stresses, the phase information must be taken into account in the stress tensor superposition. Finite Element based frequency response solvers do not allow the calculation of superposed static and dynamic responses. A manual combination of loads in a post-processing task is required. In this paper, procedures for static and harmonic loads superposition are presented and supported by analytical and finite element-based examples. The aim of the paper is to provide evidence of the risks of using different superposition techniques. Real application examples such as preloaded mechanism structures and propulsion system tubing assemblies are provided. This study has been performed by the Structural Engineering department of Airbus Defence and Space GmbH Friedrichshafen.

Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect (변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석)

  • Lee, Jung-Han;Oh, Jae Yong;Park, Sang Hu;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

Development of Single-phase Brushless DC Motor with Outer Rotor for Ventilation Fan (환풍기용 외전형 단상 브러시리스 직류전동기 개발)

  • Park, Yong-Un;Jeong, Hak-Gyun;Cho, Ju-Hee;So, Ji-Yong;Jung, Dong-Hwa;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.36-41
    • /
    • 2013
  • This paper is development of single-phase brushless DC motor with outer rotor for ventilation fan. Cogging torque causes the noise vibration to greatest impact on ventilation fan. Asymmetric notches are applied to tapered-teeth for cogging torque reduction of single-phase brushless DC motor. Initial model is notchless and proposed model is applied 2 asymmetric notches. The proposed method is proved motor characteristic through finite element analysis(FEA). Also, experimental results verify that the proposed model considerably reduces cogging torque and have the good sound quality in ventilation system.