DOI QR코드

DOI QR Code

Investigation on Effect of Aircraft Engine Crash Location on Containment Performance of a Spent Nuclear Fuel Transport Cask

사용후연료 운반용기의 격납 성능에 미치는 항공기 엔진 충돌위치의 영향 고찰

  • Jong-Sung Kim ;
  • Chang Jong Kim
  • 김종성 (세종대학교) ;
  • 김창종 (세종대학교 대학원)
  • Received : 2023.10.16
  • Accepted : 2023.12.12
  • Published : 2023.12.30

Abstract

The paper presents the results investigating the effect of aircraft engine impact location on the intended function evaluation results of spent nuclear fuel transport cask. As a result of the investigation, it is found that the structural integrity is maintained as the maximum accumulated equivalent plastic strain is below the acceptable criterion regardless of the collision location. It is identified that when the aircraft engine collided with the upper part of the transport cask without considering impact limiter the containment performance is weakened compared to when the aircraft engine collided with the central part.

Keywords

Acknowledgement

본 연구는 원자력안전위원회의 재원으로 한국원자력안전재단의 지원을 받아 수행한 원자력안전연구사업의 연구결과입니다(No. 2106064).

References

  1. Chung, S.H., Lee, H.Y., Song, M.J., Diersch, R., and Laug, R., 2002, "Evaluation of the KN-12 Spent Fuel Transport Cask by Analysis," Nuclear Engineering and Technology, Vol. 34, Iss. 3, pp. 187-201.
  2. Chung, S.H., Kim, K.Y., and Kim, Y.D., 2016, "KN-18 Spent Fuel Transport Cask," Proceedings of the 18th Int. Symp. on the Packaging and Transportation of Radioactive Materials, Kobe, Japan, September 18-23.
  3. Do, H.S., Kim, T.M. and Cho, C.H., 2016, "The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose metal Cask," Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 14, No. 4, pp. 411-422. doi:https://doi.org/10.7733/jnfcwt.2016.14.4.411
  4. ASME B&PV Code Committee, 2021, ASME B&PV Code, Sec.III, Div.3, Subsec.WB: Class TC Transportation Containments, American Society of Mechanical Engineers, NY.
  5. 10CFR50.150, 2021, "Aircraft Impact Assessment," U.S. Nuclear Regulatory Commission, Washington, DC.
  6. Thomauske, B., 2003, "Realization of German Concept for Interim Storage of Spent Nuclear Fuel-Current Situation and Prospect," Proceedings of WM03, Tucson, AZ, USA, February 23-27.
  7. Hanifehzadeh, M., Gencturk, B., and Mousavi, R., 2018, "A Numerical Study of Spent Nuclear Fuel Dry Storage Systems under Extreme Impact Loading," Engineering Structures, Vol. 161, pp. 68-81. doi:https://doi.org/10.1016/j.engstruct.2018.01.068
  8. Shirai, K., Namba, K., and Saegusa, T., 2009, "Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash," Journal of Power Energy Systems, Vol. 3, Iss. 1, pp. 72-82. doi:10.1299/jpes.3.72
  9. Lee, S.H., Choi, W.S., and Seo, K.S., 2016, "Safety Assessment of a Metal Cask under Aircraft Engine Crash," Nuclear Engineering and Technology, Vol. 48, Iss. 2, pp. 505-517. doi:https://doi.org/10.1016/j.net.2015.11.002
  10. Choi, W.S., Nam, K.O., and Seo, K.S., 2008, "Size Optimization of Impact Limiter in Radioactive Material Transportation Package Based on Material Dynamic Characteristics," Trans. of the KPVP, Vol. 4, No. 2, pp. 20-28.
  11. Shin, J.C., Yang, J.D., Sung, U.H., Ryu, S.W., and Park, Y.W., 2020, "Technology Trends in Spent Nuclear Fuel Cask and Dry Storage," Trans. of the KPVP, Vol. 16, No. 1, pp. 110-116. doi:http://dx.doi.org/10.20466/KPVP.2020.16.1.110
  12. Kim, J.S. and M.S. Cha, 2022, "Sensitivity Analysis to Finite Element Analysis Program that Evaluates the Structural Integrity of a Spent Nuclear Fuel Transport Cask Subjected to Extreme Impact Loads," Trans. of the KPVP, Vol. 18, No. 2, pp. 50-53. doi:http://dx.doi.org/10.20466/KPVP.2022.18.1.050.
  13. Korea Radioactive Waste Agency(KORAD), 2016, "Safety Analysis Report of KORAD-21", pp. 15.
  14. European Union Aviation Safety Agency(EASA), 2019, "Type-Certificate Data Sheet for CFM56-7B Series Engines", No.E.004, Iss.6.
  15. ANSYS, 2019, AUTODYN User Manual, Ver. 12.0.
  16. Dassault Systems, 2021, User's Manuals for ABAQUS, Ver.6.21.