• Title/Summary/Keyword: Finite Difference Method(FDM)

Search Result 192, Processing Time 0.023 seconds

Finite Difference Nonlinear Analysis of Composite Plate Structures with Various Layer Sequences (다양한 적층 배열을 갖는 복합 신소재 판 구조물의 유한차분 비선형 해석)

  • Lee, Sang Bum;Lee, Sang Youl;Lee, Rae Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.159-168
    • /
    • 2005
  • This study carries out a finite difference nonlinear analysis of anisotropic advanced composite plate structures with various layer sequences. In the numerical analysis of various mechanical problems involving complex partial differential equations, the finite difference method (FDM) developed in this study has an advantage over the finite element method in its ability to avoid mesh generation and numerical integration. Many studies in FDM have been made on clamped or simple boundary conditions using merely an energy approach. These approaches cannot be satisfied, however, with pivotal points along the free boundary. Therefore, this study addresses the nonlinear problem of anisotropic plates by adopting a finite difference modeling elimination of pivotal difference points in the case of a free boundary condition. Complex nonlinear behaviors of composite plate structures for various parameters, especially for layer sequences, are analyzed using the proposed approach.

A Study on the Effective Evaluation of Slope Berm Construction using Slope Stability Analysis Program (사면안정해석 프로그램을 이용한 사면 소단 설치의 효용성 평가에 관한 연구)

  • 이종현;이정엽;김승현;유기정;구호본
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.485-492
    • /
    • 2003
  • In this study, We peformed on the effective evaluation of slope berm construction using slope stability analysis programs. The effective evaluation of slope berm construction was performed by stability of slope and economy of construction. This time, used slope stability analysis programs are Talren97 that use Limit equilibrium method (LEM) and FLAC-SLOPE that use finite difference method (FDM), and carried out using Rocfall program to evaluate slope stability by rockfall occurrence.

  • PDF

Reinforcing Effect of a Soil Nailing on Plane Failure of a Slope by Comparing Finite Difference Analysis with Limit Equilibrium Analysis (유한차분해석과 한계평형해석의 비교를 통한 평면파괴 사면 쏘일네일링 보강효과 연구)

  • You, Kwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.5-15
    • /
    • 2014
  • It is very important to design and construct slopes safely because damage cases are increasing due to slope failure. Recently, Limit Equilibrium Method (LEM) based programs are commonly used for slope designs. Though LEM can give factors of safety through simple calculation, it has a disadvantage that the sliding surface should be assumed in advance. On the other hand, the use of Finite Difference Method (FDM) is increasing since the factor of safety can be easily estimated by using shear strength reduction technique. Therefore the purpose of this study is to present a reasonable slope design methodology by comparing the two commonly used analysis approaches; LEM and FDM. To this end, the reinforcement effects of the two methods were compared in terms of the support pattern of soil nailing reinforced in the section where plane failure is anticipated. As a result, the reinforcement effects by nail angle and nail spacing turned out to be equal. Also it was found that the factor of safety increased in LEM, but not changed in FDM when the nail length increased.

Damped Wave Equation-based Traveltime Calculation using Embedded Boundary Method for Irregular Topography (Embedded Boundary Method를 이용한 불규칙한 지형에서의 감쇠 파동장 기반 초동주시 계산)

  • Hwang, Seongcheol;Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • The first-arrival traveltime calculation method based on the damped wave equation overcomes the shortcomings of ray-tracing methods. Since this algorithm needs to solve the damped wave equation, numerical modeling is essential. However, it is not desirable to use the finite-difference method (FDM), which has good computational efficiency, for simulating the land seismic data because of irregular topography. Thus, the finite-element method (FEM) which requires higher computational cost than FDM has been used to correctly describe the irregular topography. In this study, we computed first-arrival traveltimes in an irregular topographic model using FDM incorporating embedded boundary method (EBM) to overcome this problem. To verify the accuracy and efficiency of the proposed algorithm, we compared our results with those of FEM. As a result, the proposed method using EBM not only provided the same accuracy as the FEM but also showed the improved computational efficiency.

A Study on the Corona Discharge Simulation Using FEM-FCT Method (FEM-FCT 기법을 이용한 코로나 방전 시뮬레이션에 대한 연구)

  • Min, Ung-Gi;Kim, Hyeong-Seok;Lee, Seok-Hyeon;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.200-208
    • /
    • 1999
  • In this paper, the corona discharge is analyzed by Finite Element Method(FEM) combined with Flux-corrected Transport(FCT) algorithm. In the previous papers, Finite Difference Method(FDM) combined with FCT was used. Usually in the FDM, the regionof interest is discretized with structured grids. But to refine local regions with same resolution, much more grids are required for the structured grids than for unstructured grids than for unstructured grids. Therefore, we propose the FEM-FCT method to simulate the corona discharge. The proposed method has good flexibility in model shape and can reduce the computational cost by the local refinement where the physical quantities have steep gradients. Using the proposed method, we study the streamer growth of parallel plate electrodes which is initiated by the low and high perturbation density. We find that the varying the initial density of perturbation has very little effect on the streamer propagation. And the corona discharge of the rod-to-plane electrode is simulated. On the surface of the rod electrode, the high concentration of the electric field gives rise to many number of streamer seeds. The strong axial streamer propagate to the plane electrode. The weaker non-axial streamer repel each other and stop growing more. The results are very similar to those of the papers which used the FDM-FCT method on structured grids. Thus we can conclude that the proposed FEM-FCT method is more efficient than the conventional FDM-FCT method by virtue of the reduction in computational grids number.

  • PDF

An Adjoint Variable Method for Eigenproblem Design Sensitivity Analysis of Damped Systems (감쇠계 고유치문제의 설계민감도해석을 위한 보조변수법)

  • Lee, Tae Hee;Lee, Jin Min;Yoo, Jung Hoon;Lee, Min Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1527-1533
    • /
    • 2005
  • Three methods for design sensitivity analysis such as finite difference method(FDM), direct differentiation method(DDM) and adjoint variable method(AVM) are well known. FDM and DDM for design sensitivity analysis cost too much when the number of design variables is too large. An AVM is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation. Because the adjoint equation is independent of the number of design variables, an AVM is efficient for when number of design variables is too large. In this study, AVM has been extended to the eigenproblem of damped systems whose eigenvlaues and eigenvectors are complex numbers. Moreover, this method is implemented into a commercial finite element analysis program by means of the semi-analytical method to show applicability of the developed method into practical structural problems. The proposed_method is compared with FDM and verified its accuracy for analytical and practical cases.

Finite Difference Stability Analysis of Anisotropic Plates with Free Edge (자유경계를 갖는 비등방성 판의 유한차분 안정성 해석)

  • Yoo, Yong Min;Lee, Sang Youl;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.221-230
    • /
    • 2000
  • Checking the stability of anisotropic plates with free edges, it is impossible that buckling loads and modes are found via existing classical methods about various loads and boundary conditions. For solving this problems. finite difference method(FDM) is used to analyze the buckling behaviors for arbitrary boundary conditions. Using FDM, it is difficult to treat the fictitious points on free edges. So, this paper analyzes buckling behaviors of analytic models with one edge free and the other edges clamped and with opposite two edges free and other two edges clamped. The various buckling loads and mode characteristics through numerical results are given for buckling behaviors of anisotropic plates on free edges.

  • PDF

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

Analysis of 1D and 2D Flows in Open-Channel with FDM and FVM (유한차분법과 유한체적법을 이용한 1차원과 2차원 개수로 흐름해석)

  • Kim, Man Sik;Lee, Jin Hee;Jeong, Chan;Park, Roh Hyuk
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2008
  • The one-dimensional (1D) finite-difference method (FDM) with Abbott-Ionescu scheme and the two-dimensional (2D) finite-volume method (FVM) with an approximate Riemann solver (Osher scheme) for unsteady flow calculation in river are described. The two models have been applied to several problems including flow in a straight channel, flow in a slightly meandering channel and a flow in a meandering channel. The uniform rectangular channel was employed for the purpose of comparing results. A comparison is made between the results of computation on 1D and 2D flows including straight channel, slightly meandering channel and meandering channel application. The implementation of the finite-volume method allows complex boundary geometry represented. Agreement between FVM and FDM results regarding the discharge and stage is considered very satisfactory in straight channel application. It was concluded that a 1D analysis is sufficient if the channel is prismatic and remains straight. For curved (meandering) channels, a 2D or 3D model must be used in order to model the flow accurately.

  • PDF

Finite Difference Method on Consolidation under Time Dependent Loading (점증하중에 의한 압밀의 유한차분해석)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1895-1899
    • /
    • 2012
  • Formulation of finite difference method for analyzing consolidation were carried out. It can be seen that the differences in settlement with time obtained by FDM and Terzaghi method are diminished by fine discretization of time increment. Excess pore pressures predicted by the derived finite difference equation were same as those calculated by Olson's method. Predicted time-settlement behavior from the derived finite difference method were almost same as those calculated by Terzaghi's method and Olson's method. Analysis results obtained from the assumed multi-step time dependent loading are thought to be reasonable.