• Title/Summary/Keyword: Finite Difference

Search Result 3,282, Processing Time 0.024 seconds

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

A fourth order finite difference method applied to elastodynamics: Finite element and boundary element formulations

  • Souza, L.A.;Carrer, J.A.M.;Martins, C.J.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.735-749
    • /
    • 2004
  • This work presents a direct integration scheme, based on a fourth order finite difference approach, for elastodynamics. The proposed scheme was chosen as an alternative for attenuating the errors due to the use of the central difference method, mainly when the time-step length approaches the critical time-step. In addition to eliminating the spurious numerical oscillations, the fourth order finite difference scheme keeps the advantages of the central difference method: reduced computer storage and no requirement of factorisation of the effective stiffness matrix in the step-by-step solution. A study concerning the stability of the fourth order finite difference scheme is presented. The Finite Element Method and the Boundary Element Method are employed to solve elastodynamic problems. In order to verify the accuracy of the proposed scheme, two examples are presented and discussed at the end of this work.

A FINITE DIFFERENCE APPROXIMATION OF A SINGULAR BOUNDARY VALUE PROBLEM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.473-484
    • /
    • 1998
  • We consider a finite difference approximation to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is proved that the rate of convergence is $O(h^2)$. To obtain the solution of the finite difference equation, an iterative scheme converging monotonically to the solution of the finite difference equation is introduced. And the numerical experiment of this method is given.

  • PDF

Efficient 3D Acoustic Wave Propagation Modeling using a Cell-based Finite Difference Method (셀 기반 유한 차분법을 이용한 효율적인 3차원 음향파 파동 전파 모델링)

  • Park, Byeonggyeong;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this paper, we studied efficient modeling strategies when we simulate the 3D time-domain acoustic wave propagation using a cell-based finite difference method which can handle the variations of both P-wave velocity and density. The standard finite difference method assigns physical properties such as velocities of elastic waves and density to grid points; on the other hand, the cell-based finite difference method assigns physical properties to cells between grid points. The cell-based finite difference method uses average physical properties of adjacent cells to calculate the finite difference equation centered at a grid point. This feature increases the computational cost of the cell-based finite difference method compared to the standard finite different method. In this study, we used additional memory to mitigate the computational overburden and thus reduced the calculation time by more than 30 %. Furthermore, we were able to enhance the performance of the modeling on several media with limited density variations by using the cell-based and standard finite difference methods together.

ANALYSIS OF A ONE-DIMENSIONAL FIN USING THE ANALYTIC METHOD AND THE FINITE DIFFERENCE METHOD

  • Han, Young-Min;Cho, Joo-Suk;Kang, Hyung-Suk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • The straight rectangular fin is analyzed using the one-dimensional analytic method and the finite difference method. For the finite difference method, the numbers of nodes vary from 20 to 100. The relative errors of heat loss and temperature between the analytic method and the finite difference method are represented as a function of Biot Number and dimensionless fin length. One of the results shows that the relative error between the analytic method and the finite difference method decreases as the numbers of nodes for finite difference method increase.

  • PDF

A FINITE DIFFERENCE SCHEME FOR RLW-BURGERS EQUATION

  • Zhao, Xiaohong;Li, Desheng;Shi, Deming
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.573-581
    • /
    • 2008
  • In this paper, a finite difference method for a Cauchy problem of RLW-Burgers equation was considered. Although the equation is not energy conservation, we have given its the energy conservative finite difference scheme with condition. Convergence and stability of the difference solution were proved. Numerical results demonstrate that the method is efficient and reliable.

  • PDF

THE CONVERGENCE OF FINITE DIFFERENCE APPROXIMATIONS FOR SINGULAR TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lee, H.Y.;Seong, J.M.;Shin, J.Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.299-316
    • /
    • 1999
  • We consider two finite difference approxiamations to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is shown that the rates of convergence are O(h) and O($h^2$), respectively. An iterative scheme is introduced which converges to the solution of the finite difference equations. Finally the numerical experiments are given

  • PDF

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

New approach method of finite difference formulas for control algorithm (제어 알고리즘 구현을 위한 새로운 미분값 유도 방법)

  • Kim, Tae-Yeop
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.817-825
    • /
    • 2019
  • Difference equation is useful for control algorithm in the microprocessor. To approximate a derivative values from sampled data, it is used the methods of forward, backward and central differences. The key of computing discrete derivative values is the finite difference coefficient. The focus of this paper is a new approach method of finite difference formula. And we apply the proposed method to the recursive least squares(RLS) algorithm.

MULTIGRID METHOD FOR AN ACCURATE SEMI-ANALYTIC FINITE DIFFERENCE SCHEME

  • Lee, Jun-S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • Compact schemes are shown to be effective for a class of problems including convection-diffusion equations when combined with multigrid algorithms [7, 8] and V-cycle convergence is proved[5]. We apply the multigrid algorithm for an semianalytic finite difference scheme, which is desinged to preserve high order accuracy despite of singularities.

  • PDF