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MULTIGRID METHOD FOR AN ACCURATE SEMI-ANALYTIC
FINITE DIFFERENCE SCHEME

JUN S. LEE

ABSTRACT. Compact schemes are shown to be effective for a class of problems in-
cluding convection-diffusion equations when combined with multigrid algorithms [7, 8]
and V-cycle convergence is proved[5]. We apply the multigrid algorithm for an semi-
analytic finite difference scheme, which is desinged to preserve high order accuracy
despite of singularities.

1. INTRODUCTION

High order finite difference schemes are very effectively working for solving elliptic
partial differential equations[1, 3, 6]. But in the presence of singularities their high order
convergence rate deteriorates[l, 6]. Singular points may arise on the boundary from an
abrupt change of boundary conditions or a re-entrant corner. To preserve the high order
accuracy, one needs to use a highly refined mesh in the vicinity of singularities. But
it cost is high. To overcome this difficulty, an accurate semi-analytic finite difference
scheme is proposed by Yosibash et al. in [11]. This method is based on the use of
known expansions of the solution near the singular points and of high order scheme
away from the singular points. This method produces large and sparse linear system
away from singularities, and small but dense linear system near the singularities. So we
propose that we use multigrid method for he linear system that arises from high order
finite difference scheme on the smooth region and direct solvers, for example Gauss
elimination, for the linear system that arises from the vicinity of singularities.

The rest of this paper is organized as follows: In section 2, we briefly present the
multigrid algorithm and results of high order finite difference scheme. In section 3, we
introduce the semi-analytic finite difference scheme and “Motz problem” for example
to explain the main idea of this scheme. In section 4, we propose algorithm that uses
multigrid algorithm and direct solvers.
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2. MULTIGRID METHOD FOR HIGH ORDER FINITE DIFFERENCE METHOD

In this section, we briefly describe an accurate semi-analytic scheme and introduce
multigrid algorithm for this scheme. We first consider the following Poisson Equation :

‘—A’U,(IL',y) :f(x,y) in Q
21 { u(z,y)  =g(z,y) on O

Here, Q can be any region in R? covered by squares. For simplicity, we assume {2 is the
unit square. For k = 1,2,...,J, let hy = 27% be a mesh size of level k. Define ) be
a space of points (x;,y;) = (ihk, jhg) for 4,5 =0,1,... , 28 and Vi be a vector space of
function evaluated at €0x. The stencil of the high-order semi-analytic finite difference
scheme is written as follows[3]:

1
5] [20u; ; — 4(ui_1j + Uij—1 + Uit1,; + Ui j+1)
(2.2) ’(Ui—l,j—l + Uit1,5-1 F Uit1 541 + Ui—l,j—l)]
2h? 2nt [, o4
= [T T (0 2

where h = hy. This nine-point discretization gives a truncation error of O(h®) over a
square mesh(i.e., a convergence rate of O(h%)). We obtain a system of linear equation
of the form

(2.3) A=,

where A is a sparse, n x n, symmetric, positive definite matrix and u is the vector
whose entries are u; j, and f is the vector whose entries are f(z;, Yj)-

To describe the multigrid algorithm for this problem, we need certain intergrid trans-
fer operators between two grids. Assuming we are given a certain prolongation operator
I ,’j_l : Vie—1 — Vi, we define the restriction operator I ,’j”l 1 Vi = Vi_1 as its adjoint
with respect to (-,-) :

(IFu,v)p—1 = (u, If_0)p Vu € Vi, Vo € Vi1

Now the multigrid algorithm for solving (2.3) is defined as follows :
Multigrid Algorithm. Set By = A]'. For 1 < k < J, assume that Bj_; has been
defined and define By f for f € V; as follows:

(1) Set z% = 0.
(2) Define o' for [ = 1,...,m by

ot =g R (f — At h).
(3) Define y™ = z™ + Iq, where q is defined by
q=q+B1 [P (f — Asz™)].
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(4) Define ¢! for | =m+1,...,2m by
— ! —
yl — yl 1+Rl(c+m)(f "Akyl 1).
(5) Set Bif = y2m.
Let the bilinear form Ag(-,-) and discrete L-inner product be defined as follows:

Ag(u,v) =(Agu,v)

1
(2.4) =5 Z (205 — 4(uio1,j + i -1 + Uit1,j + Yige1)
(]
—(Ui—l,j—l + U151 F Uigl,j+1 T+ Ui—l,j—l) ] V3,5
and
(2.5) (u, ’U)k = Zui,jvi,jh%.

1,J
Fix k. Let w;j, Uit1,5, Ui, j+1,%i+1,j+1 be points of level k — 1 and E;; be a cell hav-
ing them as its vertex. ( We borrow the term ”cell” from cell-centered method.)
Let ulj,u?;,ul; uf; and u?; be points of level k defined as in Figure 1. Note that
1 _ — .4 _ 1 4 _ .2 f o
Up ;= Up i 15 Ui = Uiy Ui = Uiji and u; ; = u;_y ;- Divide E; ; into four subcells,
: : 1 .2 3 A :
labeling them counterclockwise as e; ;, €7 ;, €; ;, €; ; at level k. ( See Figure 1.)
Now. we define the prolongation operator I¥ . be bilinear interpolation of four points
) p g Y k—1 p P
Uq jy Uit1,5y Ui j+1 and ui41,j41- First, u; j, wit1,5, Wi j+1 and wiy1,5+1 of level k are the
same value of level k — 1 respectively. The mid points u}’j,ui,j,u?,j and uij can be
written as follows:

1 Ui+ Uiq1y 9 Ui T Uid15+1
Ui = — o5 U
’ 2 ’ 2
(2.6)
o3, = digtl + Uit1,5+1 4 _ Uig Tt Uil
2% - 2 ? 2 - 2 )
The value of center u?,j is the average of u; j, uit1,j, Ui j+1 and tip1,j41
5 Wig t Uity T Uil Ui+l

Then we have the following lemmas 2.1, 2.2, Theorem 2.1, V-cycle convergence by
employing the framework presented in [2].

Lemma 2.1. [5] We have

(2.8) Ap(TF_ju, TF_ju) < Ap-1(u,u),  Vu € Vit
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Uij+1 Y, Uit1,5+1
[ o ¢ .
]
]
I
I
|
uf Fm—————— (ID —————— u? .
wj | j Y]
[
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I
I
[
. e
Uq. 4 1 Ui+1,9
2y u’i,j +1,9

FIGURE 1. cell Efﬂ- and its subcells

Lemma 2.2. Let the operator Py_1 be defined by (2.10). There exist a number 0 <
a <1 and a constant Cy such that for allk =1,---,J,

Agul2\
28 AT~ P <G (PRI awie e
k
holds for a = % Here, )\ is the largest eigenvalue of Ay and Py_1 is the elliptic

projection defined by
(2.10) Ap1(Pe_qu,v) = Ap(u, If_v), Vu € Vi,v € V.

Theorem 2.1. Let Ey = I — BiAx in algorithm V(m,m). Then we have
Ag(Eru,u) < 6 Ap(u,u), Vu € Vg,

where 0 = E"Ig—_]i/-ﬁ

3. AN ACCURATE SEMI-ANALYTIC FINITE DIFFERENCE SCHEME

An accurate semi-analytic finite difference scheme is proposed by Yosibash et al. in
[11] to overcome degradation of numerical solution for two-dimensional elliptic problems
with singularities. The scheme applies an explicit functional representation of the
exact solution near the singularities and a convectional finite difference scheme on the
remaining domain. For example, we consider the Laplace equation, so called, “Motz
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Problem”, on the region Q = { (z,y)| —1 <2z < 1,0 <y < 1}(See Fig 2).
Au=0, in Q2

u=0on —-1<z<L0,y=0

u=500o0on z=10<y<l1

Odu/dn = 0 elsewhere on the boundary.

(3.1)

The discontinuity at the origin in the boundary conditions along the line y = 0 result in
a singularity at this point. The asymptotic expansion of the solution about the origin
is of the form [10]

xX0

(3.2) u=Y_ Ar*? cos(i — 1/2)6].

i=1
As mentioned earlier, we first apply the compact scheme(high order scheme) on the
region Q/Q,. Note that grid points also lies on T'y but do not say how to treat them
yet. Now, we consider the grids points only on 'y and denote grid points by u; ;. We
add N algebraic equations of the form

N
(3.3) Ui, = Z AkTZUZ cos[(i — 1/2)8i]-

k=1
Here, r; ; and 6; ; represents the radius vector and the angle respectively from the vertex
to the grid point 4,j. It is essential that the number of the grid points along I's be
greater than N + i where i is either 0,1, or 2 depending on the boundary condition in
the vicinity of the singularities(See [11] for the details). Then an over-determined set

of equations is obtained, such that a procedure of least squares is applied. Define the
quadratic functional as follows:

N .
(34) Q=) {uj - <Z Apri s cos[(i — 1/2)91-,]-])} . (zi,y;) €Ts.
v

k=1
To find a minimum of Q, we differentiate @ by Ay and have
09
3.5 — =0 =1,2,...,N.
( ) aAk ? k 3= b

4. MULTIGRID FOR AN SEMI-ANALYTIC FINITE DIFFERENCE SCHEME

The system of linear equations, obtained in previous section is nonsymmetric and
non positive definite. It is difficult to solve the linear system, so we propose an iterative
algorithm using the effective multigrid algorithm.

Algorithm. Let uf be the discrete solution after i-th iteration and u}._be the restriction
of the discrete solution on T's. Given initial A, ..., A%,

1. Interpolate u%s using A, ..., A%.
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FIGURE 2. Grid for the Motz problem

2. Solve u® with the boundary condition u%s using multigrid algorithm.

3. Solve the linear system that arises from minimizing the quadratic functional Q
and update A’f"l, e ,A’}\}Ll.

‘4. Compute the residual of the linear system. If the residual is small enough, then
stop. Otherwise, i + 7 + 1 and go to step 1.

This algorithm is similar to block Gauss-Seidel. The linear system that arises from
high order finite difference scheme on the smooth region is large and sparse and we
use multigrid algorithm. On the other hand, the linear system that arises from mini-
mizing Q is small and dense but we can solve using direct solver, for example, Gauss
elimination.

REFERENCES

[1] R. F. Boisvert, Families of high order accurate discretizations of some elliptic problems, SIAM J.
Sci. Stat. Comput., 2, 268-284 (1981).

[2] J. Bramble, J. Pasciak and J. Xu, The analysis of multigrid algorithms with non-nested spaces or
non-inherited quadratic forms. Math. Comp. 56, 1-34 (1991).

[3] L. V. Kantorovich and V. 1. Krylov, Approzimate methods of higher analysis, Interscience, New
York, 1964.

[4] Do Y. Kwak, V-Cycle Multigrid for cell-centered finite differences, SIAM J. Sci. Comp., 21, No.
2, 552-564, (1999).

[6] Do Y. Kwak and Jun S. Lee, Multigrid analysis for higher order finite difference scheme, J.
Numerical Math., to appear.

[6) M. M. Gupta, R. Manohar, and J. W. Stephenson, High-order difference scheme for two-
dimensional elliptic equations, Numer. Meth. Partial Differential Eq., 1, 71-80(1985).

[7] M. M. Gupta, J. Kouatchou, and J. Zhang, Comparison of second- and fourth-order discretizations
for multigrid Poisson solvers, J. Comput. Phys., 92 226-232 (1997).



MULTIGRID METHOD FOR AN ACCURATE SEMI-ANALYTIC FINITE DIFFERENCE 81

[8] M. M. Gupta, J. Kouatchou, and J. Zhang, A compact multigrid solver for convection-diffusion
equations, J. Comput. Phys., 92 229-246 (1998).

[9] S. McCormick, ed., Multigrid methods. SIAM, Philadelphia, PA. 1987.

[10] H. Motz, The treatment of singularities of partial differential equations by relazation methods,
Quart. Appl. Math. 4, 371(1946).

[11] Z. Yosibash, M. Arad, A. Yakhot, G. Ben-Dor, An accurate semi-analytic finite difference scheme
for two-dimensional elliptic problems with singularities J. Numer. Meth. Partial Differential Eqs.
14, No. 3, 281-296(1998).

Department of Mathematics,
KAIST, Taejon, Korea 305-701,
email : jslee@math.kaist.ac.kr



