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THE FINITE DIFFERENCE METHOD

Young Min Han* Joo Suk Cho* Hyung Suk Kang**

ABSTRACT

The straight rectangular fin is analyzed using the one-dimensional analytic method and the finite
difference method. For the finite difference method, the numbers of nodes vary from 20 to 100.
The relative errors of heat loss and temperature between the analytic method and the finite difference
method are represented as a function of Biot Number and dimensionless fin length. One of the
results shows that the relative error between the analytic method and the finite difference method
decreases as the numbers of nodes for finite difference method increase.

Nomenclature

A, : horizontal confrontation of differential element [m']
A surface area of differential element [m’]

1

b : slop of the upper lateral surface, 0<b< T

Bi : Biot number over the fin surface (= hl/k), dimensionless

f : ratio of the rate of increase (= Ax/Ay)

h : heat transfer coefficient over the fin surface [W/nf, Cl
%k : thermal conductivity [W/m T]

! one half fin thickness [m]

L’ : fin length [m]

L : dimensionless fin length (=L"/])

Q : heat loss per unit width [W/m]
T : temperature [TC]

T, : wall temperature [T]

T, :ambient temperature [C]

w : fin width [m]

x’ . length direction coordinate

x ° dimensionless length direction coordinate (=x"//)

Ax © the rate of increase of dimensionless length direction

vy’ height direction coordinate

y © dimensionless height direction coordinate (=y'/l)

Ay : the rate of increase of dimensionless height direction

© : dimensionless temperature (= (T— T )/(T ,— T o))
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0, : modified temperature (=T ,— T )
Superscript
* ¢ dimensional variable

Subscript
w : wall

oo : surrounding

1. Introduction

The fin is usually used when the convection heat transfer coefficient is low, especially
under free convection. In the field of industry the fin is used widely, for instance,
electronic accessories, motorcycle, air cooling cylinder of lawn mower, cooling fin
attached on refrigerator. Therefore, calculating the heat through the fin surface is
very useful and there are many papers about study of the fin. Xia and Jacobi [1] use
a numerical solution to conduction within the composite medium comprised of a fin
and coating material to conduct a parametric study of the effects of geometry, thermal
conductivity of the fin and coating material, and convection coefficient on the temperature
profiles. Lee et al [2] solve the two dimensional inverse problem of estimating the
unknown heat flux at a pin fin base by the conjugate gradient method. Lin and Jang
[3] explain the fin efficiency for the elliptic fin using both mathematical analysis and
numerical analysis. Kang and Look [4] optimize a thermally asymmetric annular
rectangular fin as a function of bottom to top convection characteristic number ratio
and fin volume using two dimensional analytic method. Burmeister [5] analyzes
triangular fin performance using heat balance integral method. All these papers used
different methods for analysing the fin. Also, some papers compare different methods
for the specific shape of the fin. For example, Abrate and Newnham [6] shows the
comparision of the fin centerline temperature between the finite element method and
the analytic method for the triangular fin. Kim and Kang [7] compare the heat loss
from the parabolic fin between the analytic method and the finite differnce method.
But in this paper the number of nodes are fixed for the finite difference method.

The purpose of this paper insures the accuracy of the analytic method and the
finite difference method by comparing these two methods with the view of heat transfer
from the rectangular fin. Especially, for the finite difference method, a number of nodes
vary from 20 to 100 and the effect of node numbers on the relative error is shown.
The relative errors of heat loss and temperature distribution between the analytic
method and the finite difference method are represented as a function of Biot number
and dimensionless fin length.

2.1. One—dimensional analytic method

Under steady state conditions, a general form of the energy equation for an extended
surface is given by Eq. (1).

diT ( 1
w2\ A,

dA , dT_( 1 _h_dAs) _ _
o )dx’ Ak ac ST T==0 S
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Equation (1) can be written for a rectangular fin with assuming w'>2/

d:T
dx»z

Two boundary conditions are needed to solve Eq. (2) and are shown by Eqgs. (3)
and (4).
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Fig. 1 Straight rectangular fin of uniform cross

section

x =0, T=T, (3)

X=1, WT—T.)=— %CTT (4)

Equation (3) represents the constant fin base temperature while Eq. (4) means that

the convection heat transfer from the fin tip equals to the heat conduction through
the fin tip.

Equation (2) can be written by dimensionless form as Eq. (5).

d%
dx2

+ Bi© =90 (5)

Two boundary conditions (3) and (4) are transformed into dimensionless forms as Egs.
(6) and (7).

x=0, 0=06, (6)
dao

x=1L, ’Ex—+Bi9=0 (7

By solving Eq. (5) with the boundary conditions listed as Egs. (6) through (7), the
temperature distribution can be obtained. The result is
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cosh{V B{L— x)} +V Bisinh{V B{ L — x)} (8)
cosh (V BiL) +V Bisinh (Y BiL)

O =

Heat transfer from the fin can be obtained by appling temperature distribution equation
to Fourier's conduction law.

——paldT

o——a(2E) ©)

=9%0 { v Bisinh (V BiL) +V Bicosh (V Bi } (10)
" cosh(V BiL)+V Bisinh (V BiL)

2.2. One-dimensional finite difference method
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Fig. 2 Geometry of a rectangular fin
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Fig. 3 Upper half rectangular fin presenting
12 nodes for the finite different method

As shown in Fig. 2, the straight rectangular fin is symmetry so that the upper half
fin is divided by 12 nodes for finite difference method. For each of the nodes shown
in Fig. 3, the equations are given by Egs. (11) through (13).

For node 1

For node 2 (and a similar form for the points 37 11)
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For node 12
© n— (1 +/Bi~5E + /Bis )P =0 (13)

The convection heat loss Q from the fin can be calculated using Eq. (14).

-9 _p (_1 1 _%)
. =Bisx 5+ 219i+ 5 O 1t 7, (14

3. Results

Fig. 4 shows the relative errors in the convection heat loss between the analytic
method and the finite difference method as a function of Biot number for L=6 and
N=20, 25, 35 and 50 for the finite difference method. It shows the relative error increases
linearly as Biot number increases and that increasing rate decreases as a number
of nodes increases. For a given range of Biot number the maximum relative error
is less than 1.1% even though N is 20. This means that the finite difference method
with just 20 nodes is accurate enough to analyze the short rectangular fin.

Fig. b represents the relative error of heat loss between the analytic method and
the finite difference method as a function of dimensionless fin length for Bi=0.01 and
N=20, 30, 50 and 100. The relative errors increase parabolically as L increases for
all values of N. It also shows that the maximum relative error is less than 0.12% even
though N=20 and L=20.
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Fig. 4 Relative error of the heat loss versus

Biot number for L=6
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Fig. 5 Relative error of the heat loss versus

dimensionless fin length for Bi=0.01

The relative errors of the temperature at the fin tip for L=6 and N=20, 25, 35
and 50 using the finite difference method as compared to the analytic method versus
Biot number are illustrated in Fig. 6. The relative error increases linearly as Biot
number increases for all values of N. It can be noted that the relative error decreases
from over 2.7% to 0.3% as N increases from 20 to 50 for Bi=1.

Figure 7 illustrates the relative errors of temperature at the fin tip between the
finite difference method and the analytic method as a function of dimensionless fin
length in case of Bi=0.01, and N=20, 25, 35 and 50. It shows that the relative error
seems to be independent on the dimensionless fin length for N=100 and it increase
parabolically as L increases for N=20, 30 and 50. Even for the smallest value of N,
the relative error remains less than 0.1% until L increase to 20.
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Fig. 6 Relative error of the temperature at the fin

tip versus Biot number for L=6
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Fig. 7 Relative error of the temperature at the fin
tip versus the dimensionless fin length

for Bi=0.01
4. Conclusion

The results presented produce the following straightforward conclusions.

(1) The relative error increases linearly as Biot number increases for fixed fin length.
(2) The relative error increases parabolically with the increase of dimensionless fin
length for fixed Biot number.

(3) The relative error between the analytic method and the finite difference method
decreases as the numbers of nodes for the finite difference method increase.
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