• Title/Summary/Keyword: Fine ceramics

Search Result 244, Processing Time 0.029 seconds

Electrorheological effect on the dispersive system consisting of polarizable fine powder/dielectric oil (분극성을 갖는 미세 입자/유전유체 분산계에서의 전기유변효과)

  • Kim, Sang-Guk;Choe, Yun-Dae
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.185-192
    • /
    • 1993
  • Abstract Electrorheological effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. ER effect was explained divided into following 3 mechanisms; (1) surface conductance, (2) bulk conductance, and (3) induced polarization. Mathematical model which predicts the interactive force between two fine particles in the electrorheological fluid has been introduced based on the induced polarization mechanism. This model may provide guide to select materials for strong ER effect. The attractive force between two particles was calculated using the above model for the selected 7 materials such as ceramics, ferrites, polymers etc. From the calculation result, it was found that the ceramics and ferrites are good materials which show a strong ER effect.

  • PDF

The Structural and dielectric Properties of the $BaTiO_{3}+10wt%Nb_{2}O_{5}$ ceramics with the sintering temperature (소결온도에 따른 $BaTiO_{3}+10wt%Nb_{2}O_{5}$ 세라믹스의 구조 및 유전특성)

  • 이상철;이성갑;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.402-405
    • /
    • 2001
  • The BaTiO$_3$+10wt%Nb$_2$O$_{5}$ ceramics were prepared by conventional mixed oxide method. The structural and dielectric properties of the BaTiO$_3$+10wt%Nb$_2$O$_{5}$ ceramics with the sintering temperature were investigated. Increasing the sintering temperature, the 2$\theta$ value of BaTiO$_3$peaks were shifted to the higher degree and intensity of the BaTiO$_3$and BaNbO$_3$peaks were increased. In the BaTiO$_3$+10wt%Nb$_2$O$_{5}$ ceramics sintered at 135$0^{\circ}C$ and 1375$^{\circ}C$, the grain was fine and uniform. Increasing the sintering temperature, the pore was decreased and the dielectric constant was increased. In the BaTiO$_3$+10wt%Nb$_2$O$_{5}$ ceramics sintered at 1375$^{\circ}C$, the dielectric constant and dielectric loss were 5424, 0.02 respectively.ctively.

  • PDF

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.

Effect of Thermal Aging in PMN-PZT Ceramics (PMN-PZT 세라믹스에 있어서 열에이징 효과)

  • 이개명;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.17-21
    • /
    • 1995
  • Tw types of Pb(Mn$\sub$1/3/Nb$\sub$2/3/)O$_3$+PZT Ceramics had been fabricated by hot-pressing method. One had cause grain and the other had fine grain doe to Cr$_2$O$_3$ addition. These specimen were poled by applying the DC electric field in various steps. The effects of thermal aging on their piezoelectric characteristics and temperature stability of the frequency were investigated.

  • PDF

Preparation of La-modified PbTiO3 Ceramics on Coprecipitation and Salt Decomposition Method (공침법 및 염분해법에 의한 La-modified PbTiO3 요업체의 제조)

  • 이병우;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.62-66
    • /
    • 1990
  • La-modified PbTiO3 Powders and ceramics were prepared by coprecipitation and salt decomposition method. In this process, fine and homogeneous single phase of La-modified PbTiO3 was synthesized at lower temperature than oxide mixing method. And these powders contributed to lowering calcination temperature and rising sintering properties. The properties of these powders and the change of properties with themperature and the effect of powder properties on sintering were investigated.

  • PDF

Powder Preparation and Sintering Properties of PZT-Ceramics by Coprecipitation (공침법에 의한 PZT의 분체제조 및 소결특성)

  • 안영필;김복희;이병우
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.54-58
    • /
    • 1988
  • In order to depress PbO vaporization during calcination and improve sinterability in low temperature, a method for preparing homogeous Lead-Zirconate-Titanate (PZT) powder from aqueous salt solution by precipitation is described. In this method, single phae PZT fine powders are formed at above 500$^{\circ}C$. PZT-ceramics using these powders have high sinterability, and good sintering characteristics relatively low temp. (-high apparent density, low porosity, low water adsorption etc.)

  • PDF

Effect Of Bedding on the Microstructure of Si3N4 with Ultrafine SiC (초미립 SiC가 첨가된 질화규소에서 미세구조에 미치는 Bedding의 영향)

  • 이홍한;김득중
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • The effect of bedding on the microstructure of $Si_3N_4$ added with ultra-fine SiC was investigated. The bedding and the addition of ultra-fine SiC effectively inhibited grain growth of $Si_3N_4$ matrix grain. The microstructures of the specimens sintered with bedding powder consisted of fine-grains as compared with the specimens sintered without bedding powder. In addition, the grain size and the difference of grain size between the specimens sintered with bedding and without bedding was reduced with increasing SiC content. Some ultra-fine SiC particles were trapped in the $Si_3N_4$ grains growed. The number of SiC particles trapped in the $Si_3N_4$ grains increased with increasing the grain growth. When ultra-fine SiC particles were added in the $Si_3N_4$ ceramics, the strength was improved but the toughness was decreased, which was considered to be resulted from the decrease of the grain size.

Cryogenic microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles

  • Bhuyan, Ranjan K.;Thatikonda, Santhosh K.;Dobbidi, Pamu;Renehan, J.M.;Jacob, Mohan V.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.105-116
    • /
    • 2014
  • The microwave dielectric properties of $CeO_2$ nanoparticles (0.5, 1.0 & 1.5wt%) doped $Mg_2TiO_4$ (MTO) ceramics have been investigated at cryogenic temperatures. The XRD patterns of the samples were refined using the full proof program reveal the inverse spinel structure without any secondary phases. The addition of $CeO_2$ nanoparticles lowered the sintering temperature with enhancement in density and grain size as compared to pure MTO ceramics. This is attributed to the higher sintering velocity of the fine particles. Further, the microwave dielectric properties of the MTO ceramics were measured at cryogenic temperatures in the temperature range of 6.5-295 K. It is observed that the loss tangent ($tan{\delta}$) of all the samples increased with temperature. However, the $CeO_2$ nanoparticles doped MTO ceramics manifested lower loss tangents as compared to the pure MTO ceramics. The loss tangents of the pure and MTO ceramics doped with 1.5 wt% of $CeO_2$ nanoparticles measured at 6.5K are found to be $6.6{\times}10^{-5}$ and $5.4{\times}10^{-5}$, respectively. The addition of $CeO_2$ nanoparticles did not cause any changes on the temperature stability of the MTO ceramics at cryogenic temperatures. On the other hand, the temperature coefficient of the permittivity increased with rise in temperature and with the wt% of $CeO_2$ nanoparticles. The obtained lower loss tangent values at cryogenic temperatures can be attributed to the decrease in both intrinsic and extrinsic losses in the MTO ceramics.

MnO2 as an Effective Sintering Aid for Enhancing Piezoelectric Properties of (K,Na)NbO3 Ceramics

  • Jeong, Seong-Kyu;Hong, In-Ki;Do, Nam-Binh;Tran, Vu Diem Ngoc;Cho, Seong-Youl;Taib, Weon Pil;Lee, Jae-Shin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.399-403
    • /
    • 2010
  • The effects of $MnO_2$ doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na)$NbO_3$ (KNN) ceramics have been investigated. $MnO_2$ was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.

A Study on the Surface Grinding Characteristic of Engineering Cramics (엔지니어링 세라믹스의 평면 연삭 가공 특성에 관한 연구)

  • Kang, J.H.;Heo, S.J.;Kim, W.L.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.38-49
    • /
    • 1994
  • In this study, grindability of some representative engineering ceramics are experimentally investigated using resin bond diamond wheel with conventional surface grinding machine, and proper grinding conditions which can be obtained from various experimental results are established also for mechanical components which are proper to domestic circumstances with high reliability. And through the results of experiment, it is confirmed that grinding energies of the ceramics, especially in the case of $Al_2O_3$, are lower than steel with same machining condition in the conventional grinding because of their fine-brittle fracture mode type removal process, though the ceramics are well-known to unmachinable materials. And moreover, the total pass numbers needed for spark-out process to be completed are depend on their mechanical properties because that grinding stiffness is different from each other. The grinding force, ginding power and ground surface roughness are also measured and compared. Furthermore, the experiments carried out in this study, some useful results are obtained with can guide to grind engineering ceramics with conventional surface grinding machine.

  • PDF