• 제목/요약/키워드: Fine bubbles

Search Result 47, Processing Time 0.027 seconds

NOx 저감을 위한 다공성 광촉매 콘크리트 필터 제조 및 효율평가 (Porous Photocatalytic Concrete Filter Manufacturing and Efficiency Evaluation for NOx Reduction)

  • 김종규
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.223-229
    • /
    • 2022
  • A porous photocatalyst concrete filter was successfully produced to remove NOx, by mixing TiO2 photocatalyst with lightweight aerated concrete. Ultra Fine Bubbles were used to form continuous pores inside the porous photocatalytic concrete filter, which was mixed via a bubble generation experiment. The optimal mixing condition was determined to be with 4 % of the bubble generation agent B. NO removal specimens were prepared for various photocatalytic loading conditions, and the specimen containing 3 % P-25 removed NO at a concentration of 1.03 µmol in 1 h. The NO removal rate of the porous photocatalytic concrete filter prepared in this study was 10.99 %. This photocatalytic filter performance was more than 9 times the amount of NO removed by a general photocatalytic filter. The porous photocatalyst concrete filter for removing NOx developed in this study can be applied to various construction sites and the air quality can be solved by reducing NOx contributing to the formation of fine particles.

전산유체역학과 ADV기술을 이용한 장폭비의 DAF조내 수리흐름에 미치는 영향 연구 (Examining the Effect of L/W Ratio on the Hydro-dynamic Behavior in DAF System Using CFD & ADV Technique)

  • 박노석;권순범;이선주;배철호;김정현;안효원
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.421-428
    • /
    • 2005
  • Dissolved air flotation (OAF) is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In this study, we investigated the effect of L/W (L; Length, W; Width) on the hydro-dynamic behavior in DAF system using CFD (Computational Fluid Dynamics) and ADV (Acoustic Doppler Velocimetry) technique. The factual full-scale DAF system, L/W ratio of 1:1, was selected and various L/W ratio (2:1, 3:1, 4:1 and 5:1) conditions were simulated with CFD. For modelling, 2-phase (gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. Also, for verification of CFD simulation results, we measured the factual velocity at some points in the full-scale DAF system with ADV technique. Both the simulation and the measurement results were in good accordance with each other. As the results of this study, we concluded that L/W ratio and outlet geometry play important role for flow pattern and fine bubble distribution in the flotation zone. In the ratio of 1:1, the dead zone is less than those in other cases. On the other hands, in the ration of 3:1, the fine bubbles were more evenly distributed.

경화콘크리트 내부의 기포분포상태 분석에 관한 연구 (Image analysis of an air void system in hardened concrete)

  • 김기철;정재동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.791-796
    • /
    • 1998
  • Air voids existed in hardened concrete have an important influence on concrete deterioration such as carbonation, freezing and thawing, and corrosion of embedded steel in concrete. Therefore it is very significant to investigate the pore structure of system(size, number and continuity of air voids) to solve the reason caused concrete deterioration. The purpose of this study is to develop the standard method of measuring air voids which affect properties in hardened concrete using image analyzing system. This paper presents the settlement of rapid and exact experimental method which extracts fine bubbles, calculates the number of air voids, and determines air-void distribution using image analyzing system with computer.

  • PDF

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments

  • Wu, C.T.;Hu, Wei
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.83-105
    • /
    • 2013
  • In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.

생물반응공정에 대한 고액분리조로서 부상공정의 적용성 평가 (An assessment on feasibility of flotation as a secondary clarifier of an activated sludge process)

  • 정종민;김윤중;조강우;이상협;홍석원;정태학
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.551-559
    • /
    • 2008
  • An experimental study was carried out to evaluate the potential of flotation process for the secondary clarifier of an activated sludge process. Flotation techniques, applied in this study, include electrofloation (EF) which generated fine bubbles smaller than $35{\mu}m$ in average and diffuser flotation (DF) which generated fine bubbles smaller than $55{\mu}m$ in average. The batch experiments were done with activated sludge displaying various characteristics. It was shown that the efficiency of solids/liquid separation was reduced as the diluted sludge volume index ($DSVI_{30}$) of activated sludge increased. The dependency, however, gradually decreased as the gas to solids (G/S) ratio increased. Thickening efficiency of EF was more than 2~10 times and DF process was more than 1.5~5 times as compared with gravity sedimentation (GS). Stable sludge blanket was maintained regardless of sludge settleability when the G/S ratio was 0.019 in the EF. On the other hand, Serious deterioration in the sludge blanket was observed in the DF depends on G/S ratio and sludge settleability. And For EF and DF, the suspended solids concentration of effluent was not nearly influenced on settleability of activated sludge and more clear than GS. A biological nutrient removal (BNR) process, combined with EF as a secondary clarifier was operated for three months. The mean MLSS (mixed liquid suspended solids) concentration in the reactor and mean solids concentration of return sludge were estimated to be 5,340 mg/L and 16,770 mg/L, respectively. The water quality of effluent was considerably stable and low value was accomplished, that was, standard suspended solids concentration $0.07{\pm}0.51mg/L$ and standard turbidity $1.44{\pm}0.56NTU$. The EF could be applicable for enhancement of efficiency of activated sludge system as well as improvement of the water quality of effluent.

오리피스 노즐 수직 2 상 유동의 물질전달 특성 (Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle)

  • 김동준;양희천
    • 대한기계학회논문집B
    • /
    • 제39권10호
    • /
    • pp.817-824
    • /
    • 2015
  • 본 논문은 수직 오리피스 노즐의 유동 및 물질전달 특성에 대한 실험적 연구를 목적으로 한다. 구동유체 및 부유체의 유량, 용존산소 농도 그리고 소비 전력을 측정하였으며, 고속 카메라를 이용한 직접 촬영 기법으로 수직 혼합유동의 가시화 이미지를 획득하였다. 측정자료를 이용하여 질량비, 총괄 산소전달 계수 그리고 물질전달 성능계수를 도출하였다. 구동압력이 증가하면 질량비는 약간 감소하는 반면에, 산소전달 계수와 소비전력은 증가하였다. 구동압력이 증가하고 질량비가 작아지면, 기포의 미세화가 촉진되고 확산도가 증대되기 때문에 산소 전달율이 증가하였다.

Raman Microscope를 이용한 진사 유약 발색 특성 분석 (Analysis of the Coloration Characteristics of Copper Red Glaze Using Raman Microscope)

  • 어혜진;이병하
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.518-522
    • /
    • 2013
  • This study investigatesthe coloration mechanism by identifying the factor that affects thered coloration of copper red glazesin traditional Korean ceramics. The characteristics of the reduction-fired copper red glaze's sections are analyzed using an optical microscope, Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The sections observed using an optical microscope are divided into domains of surface, red-bubble, and red band. According to the Raman micro spectroscopy analysis results, the major characteristic peak is identified as silicate in all three domains, and the intensity of $Cu_2O$ increases toward the red band. In addition, it is confirmed that the most abundant CuO exists in the glaze bubbles. Moreover, CuO and $Cu_2O$ exist as fine particles in a dispersed state in the surface domain. Thus, Cu combined with oxygen is distributed evenly throughout the copper red glaze, and $Cu_2O$ is more concentrated toward the interface between body and glaze. It is also confirmed that CuO is concentrated around the bubbles. Therefore, it is concluded that the red coloration of the copper red glaze is revealed not only through metallic Cu but also through $Cu_2O$ and CuO.

DAF 공정에서 부상속도 향상을 위한 플럭형성 조건 평가 (Evaluation of Floc Formation Conditions for Increasing Flotation Velocity in DAF Process)

  • 권순범;민진희;박노석;안효원
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.245-255
    • /
    • 2006
  • Dissolved air flotation is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In order to enhance the flotation velocity and removal efficiency of flocs in the flotation process, we tried to obtain pretreatment conditions for the optimum DAF process operation by comparing and evaluating features of actual floc formation and flotation velocity etc, according to coagulant types and conditions for flocculation mixing intensity by using PIA, PDA, and FSA. Accordingly, generating big flocs that have low density at low flocculation mixing intensity may reduce treatment efficiency. In addition, generating small flocs at high flocculation mixing intensity makes floc-bubbles smaller, which reduces flotation velocity, In this study, it was found that high flocculation mixing intensity could not remove the remaining micro-particles after flocculation, which had negative effects on treated water quality, Therefore, in order to enhance treatment efficiency in a flotation process, flocculation mixing intensity around $50sec^{-1}$ is effective.

DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가 (Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process)

  • 곽동희
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

2년 근 인삼재배 시 파인버블(Fine bubble)처리가 생육에 미치는 영향 (Effect of Fine Bubble Treatment on the Growth of Two-year-old Ginseng)

  • 안철현
    • 한국자원식물학회지
    • /
    • 제30권5호
    • /
    • pp.549-555
    • /
    • 2017
  • 재배지 부족과 기후변화로 인하여 인삼재배의 생산량이 적어지고 있어 추가적인 방법이 필요하다. 따라서 기존에는 환경산업 및 식품포장, 가공에 활용되고 있는 파인버블을 우리나라 대표 작물인 인삼재배에 적용하여 변화되는 생리적, 형태적 특성을 분석하였다. 2년 근 인삼에 파인버블수를 적용한 결과 Table 2에서 보듯이 줄기 길이와 잎이 증가되었고 뿌리에서는 주근이 커지면서 무게가 증가되었다. 특히 잎이 커지면서 뿌리의 무게가 증가됨을 보이고 있는데 이는 총엽록소 함량을 확인한 결과 높게 나와 광합성 효율 증대와 연계되었다고 판단된다. 본 연구결과에서는 파인버블수를 사용한 인삼 재배시 인삼의 성장 저해가 나타나지 않았음을 확인하였으며, 생리적 특성 및 세분화된 결과를 통해 인삼의 전체적인 생육이 약 10%에서 15% 생장이 증가되는 것을 확인할 수가 있다. 따라서 인삼 재배시 파인버블수를 적용함으로써 인삼이 생육 증대가 이루어지고 있다는 것을 의미할 수 있다. 추후 파인 버블수를 적용된 3-5년 근의 고년 근 인삼에서도 특징을 유지하는지 추가적인 연구가 필요하다고 사료된다.