• Title/Summary/Keyword: Fine aggregates

Search Result 418, Processing Time 0.024 seconds

A Sustainable Concrete for Airfield Rigid Pavements (공항 활주로 포장용 친환경 콘크리트의 활용 방법)

  • Salas-Montoya, Andres;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.23-24
    • /
    • 2021
  • The use of recycled concrete aggregates (RCA) as a substitute for natural aggregates in new concrete produces both economic and environmental advantages. Most of the RCA applications for pavements have been primarily applied to support layers for roads and airfields. This paper summarizes a work completed at the University of Illinois in partnership with the O'Hare Modernization Program to examine the effect of coarse and fine RCA on the concrete's fresh and hardened properties for airfield rigid pavement applications. Ten different RCA concrete mixtures were prepared with the incorporation of different percentages of RCA fines as well as replacement of cement with high volume percentages of supplementary cementitious materials such as Class C fly ash and ground granulated blast furnace slag to improve the workability and long-term properties of RCA concrete. All the mixes on this stage included 100% recycled coarse aggregates and the Two-Stage Mixing Approach was used as a mixing procedure. Based on the results obtained in the research, mixes with high percentages of recycled fine and coarse aggregates could be used for construction of airfield concrete pavements in conjunction with supplementary cementitious materials

  • PDF

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

Research on building AI learning data for rapid quality assessment of aggregates (골재의 신속한 품질평가를 위한 AI 학습용 데이터 구축에 관한 연구)

  • Min, Tae-Beom;Kim, In;Lee, Jae-Sam;Baek, Chul-Seoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.209-210
    • /
    • 2023
  • In this study, the accuracy of the assembly rate of fine aggregate and the cleavage rate of coarse aggregate was analyzed using the constructed learning data. As a result, it was possible to predict the distribution of assembly rate for fine aggregate through a simple sample collection image, showing an accuracy of 96%. The classification of the aggregates could be confirmed by analyzing the fracture shape of the gravel, showing an accuracy of 97%.

  • PDF

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

The Properties of Concrete Incorporating Stone Powders as Part of Fine Aggregates (잔골재의 일부로 사용된 부순골재 미분말이 콘크리트 성질에 미치는 영향)

  • Kang, Su-Tae;Seo, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.116-122
    • /
    • 2016
  • This study was intended to evaluate the properties of concrete incorporating stone powders which are created during crushing natural stones to produce crushed aggregates. For concretes with 0~30 wt.% partial replacement fine aggregates with stone powders, experiments of slump, air content, strength and drying shrinkage were carried out. The experiments found that the increase of the amount of stone powders sharply decreased slump and air content. Partially using stone powders instead of fine aggregates was found to increase both compressive and tensile strength slightly. Substituting higher amount of stone powders presented higher drying shrinkage. When HRWRA was added into the concrete with stone powders in order to obtain workability similar to that of plain concrete without stone powders for the same water-cement ratio and unit weight of cement, air content increased with the amount of HRWRA but strength and drying shrinkage were hardly affected by adding HRWRA.

A Study on the Development of Forced Carbonation Reforming Technology for Recycled Aggregates (순환골재의 강제 탄산화 개질 기술 개발을 위한 기초적 연구)

  • Lim, Myung-Kwan;Park, Won-Jun;Lee, Huck;Kim, Do-Yun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.207-208
    • /
    • 2016
  • The most important things for the production of recycled aggregates are saving energy, suppressing the generation of by-product fine particles and sustaining the performance of concrete. As solutions, this study proposes this technology of improving the performance of recycled aggregates through forced carbonation.1) It is to stimulate and carbonate the bond paste part that causes the deterioration of recycled aggregates. Particularly, the purpose of this technology is to fill and chemically stabilize pores inside the bond paste, further improving the quality of recycled aggregates with a decreased absorption rate and an enhanced aggregate strength. Ultimately, it is possible to obtain a carbonation model, depending on the paste ratio and particle-size distribution of recycled aggregates. Moreover, by calculating the optimum carbonation period through the verification of this carbonation model, it is possible to examine how much the strength is improved by the reformation of recycled aggregated.

  • PDF