• Title/Summary/Keyword: Fine actuator

Search Result 107, Processing Time 0.03 seconds

Actuating Characteristics of an Asymmetric Optical Pick-up Fine Actuator of a High Speed CD-ROM (고배속 CD-ROM용 비대칭형 광픽업 미세구동기의 구동특성)

  • 고상선;류제하;박기환;정호섭
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.346-352
    • /
    • 1998
  • This paper presents actuating characteristics of an asymmetric high-speed optical pick-up fine actuator that can be installed in a small area such as a notebook personal computer. In the asymmetric actuator four points (mass center, actuation center, supporting point of wire suspension on a bobbin, and optical axis) are not coincident so that the proposed actuator suspension reveals undesirable suspension resonance in the pitch and yaw direction. Lumped parameter dynamic model in each direction is used to investigate the driving characteristics with respect to relative location of the four points. Some of desired design directions toward reducing resonance peaks are suggested by using sensitivity information. In order to avoid undesirable resonance, at least supporting point on the obbin must be located in the middle of the mass and actuation center of the asymmetric pick-up actuator.

  • PDF

Interaction Analysis of Dual-stage System during Seek Motion and Control for Track Pull-in Enhancement (탐색 과정시 2단 액추에이터의 상호 작용 분석 및 트랙 끌어들임 성능 향상을 위한 제어)

  • Lee, Kwang-Hyun;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil;Choi, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1276-1286
    • /
    • 2005
  • In this paper, the dual stage interaction between the coarse actuator and the fine actuator of an optical disk drive is studied, and the new control method to enhance the track pull-in performance using fine actuator control is proposed. First, the dynamic analysis for the dual stage and the experiments to find the each actuator dynamics are performed. From the experiments, some physical parameters of the actuators were derived, then, some simulations are performed to find the interaction effect of the fine actuator during seek motion. Second, the center servo which suppresses the vibration of fine actuator during seek motion is designed and evaluated. And the fine actuator control to reduce the relative velocity between the target track and beam spot is proposed. From simulations, we show that fine actuator control which has same frequency and same phase of the disturbance is effective to reduce the relative velocity, and this result leads to track pull-in enhancement. Hence, the proposed control method is good approach to improve the track pull-in performance. Finally, the realization of the proposed method and some comments of it are briefly discussed.

Evaluation of Dynamic Characteristics of Coarse Actuator and Design of a 2-Wire Fine Actuator for Small Form Factor ODD (초소형 광디스크 드라이브용 조동구동기의 동특성 평가 및 2-와이어 미세 구동기의 개발)

  • 박세준;이강녕;이동주;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.351-351
    • /
    • 2004
  • For greeting the era of ubiquitous network, data storage devices have been essentially attached to mobile data devices. As a result, the minimization of the storage device has arisen as major interests in the next generation data storage technology. So, there are many researches for the small form factor ODD. In this paper, we propose a pick up that consists of a linear VCM and 2-wire focusing actuator for a small form factor ODD. For the sake of checking performance of the coarse actuator, PID controller is designed. Experiment with controller and DSP board shows its propriety as a fine tracking actuator. And, 2-wire suspension actuator is designed in order to be contained in a coarse actuator and to satisfy the thickness of a PCMCIA type. Through the experiment of designed actuator, It verifies performance as a focusing actuator.

  • PDF

The Design and Performance Test of Miniaturized Sled Type Dual-Servo Actuator (초소형 Sled-type 이중 서보 엑추에이터 설계 및 특성 분석)

  • 강동우;김기현;정재화;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.357-360
    • /
    • 2002
  • Nowadays, the improvement and development of Multi-media, information and communication technology are rapidly processed. And many products, for example, digital camera, digital camcorder, and PDA, are used for them. They need large data storage capacity and small size, light storage system. Due to that, many studies and researches in data storage system have been carried out. Especially, micro drive system was presented by IBM.(1) However, its system is expensive and uneasy to be portable. In ODD technologies, 1 inch drive system is not yet or in processing status.(2) If to be possible and to be come up, it is cheap than HDD system and easy to transfer information. In this paper, a miniaturized actuator(about linch) is designed and tested for ODD system. Specially, it is adapted for NFR(Near-field Recoding) system using SIL(Solid Immersion Lens). It is the dual-servo actuator which consists of a coarse actuator and fine actuator. Its actuating force generation method is VCM(Voice Ceil Motor). The fine actuator has 4-wire suspensions and bobbin wrapped by coil and includes focusing motion as well as tracking motion. The coarse actuator has an actuating coil and V-grooved guide mechanism. Also, the characteristics of the designed actuator is estimated by sine-swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

Interaction Analysis of Dual-stage System during Seek Motion, and Control for Track Pull-in Enhancement (탐색 과정시 2단 액츄에이터의 상호 작용 분석 및 트랙 끌어들임 성능 향상을 위한 제어)

  • Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.236-241
    • /
    • 2004
  • In this paper, the dual stage interaction between the coarse actuator and the fine actuator of an optical disk drive and the control method to enhance the track pull-in performance are discussed. First, the interaction analyses for the dual stage, and the experiments to find the each actuator dynamics are studied. From the experiments results, some physical parameters was derived, then, some simulations are performed to find the residual vibration effect of the fine actuator during seek motion. Second, the fine actuator control method to reduce the relative velocity, which is a key factor in track pull-in performance, between the target track and beam spot is proposed. From simulations, we show that fine actuator control which has same frequency and same phase of the disturbance is effective to reduce the relative velocity, hence, the control method is good approach in the track pull-in enhancement. Finally, the some comments are discussed briefly.

  • PDF

Optimal Design of a Fine Actuator for Optical Pick-up (광픽업 미세구동부의 최적설계)

  • Lee, Moon-G;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.819-827
    • /
    • 1997
  • In this paper, a new modeling of a fine actuator for an optical pick-up has been proposed and multiobjective optimization of the actuator has been performed. The fine actuator is constituted of the bobbin which is supported by wire suspension, the coils which wind around the bobbin, and the magnets which cause the magnetic flux. If current flows in the coils, magnetic force is so produced as to be balanced with spring force of wire, so the bobbin is pisitioned. In this model the transfer function from input voltage to output displacementof bobbin has been obtained so that we can describe this integrated system with electromagnetic and mechanical parts. Wire suspension is regarded as a continuous Euler beam, damper as distributed viscous damping, and bobbin as a rigid body which can move up- and down- ward motion only. According to the model, the high frequency dynamic characteristics of the fine actuator can be known and the effect of damping can be investigated while the conventional second order model cannot. In multiobjective optimization, two objective functions have been chosen to maximize the fundamental frequency and the sensitivity with respect to the input voltage of the actuator so that Pareto's optimal solutions have been obtained using .epsilon.-constraint method. These objective functions will satisfy the trends which will enhance the access speed and reduce the tracking error in the optical pick-up technology of next generation. In the result of optimization, we obtain the designs of the optical pick-up fine actuator which has high speed, high sensitivity and low resonant peak. Furthermore, we offer the relation between two object functions so that the designer can make easy choice.

Mechanism Design of Optical Pickup Actuator for Fast Access of Optical Disk Drive (광디스크 드라이브의 고속 액세스를 위한 광픽업 액추에이터 메커니즘 설계)

  • 박준혁;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.109-119
    • /
    • 2002
  • In this paper, mechanism design of optical pickup actuator for fast access is proposed. This actuator is composed of moving magnet type actuator and moving coil type actuator for tracking and fine motion, respectively. Moving magnet type tracking actuator is configurated by two permanent magnets and four air-core solenoids. Additional damper by induced current in tracking actuator can reduce the transient vibration between the coarse seeking servo and fine seeking servo. Variable stiffness can be acquired by applying current to air-core solenoid simply. This actuator can achieve fast access by these additional damper and stiffness. Performance of this actuator is predicted through the FEM, simulation and simple experiment. Settling time for transient vibration is reduced to 14.7% according to simulation result.

A study on the design and control super-precision coarse and fine positioning apparatus (초정밀 조미동 위치결정기구의 설계 및 제어에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.18-23
    • /
    • 1995
  • The study was carried out to develope a precision positioning apparatus, consisting of DC servo motor and piezoelectric actuator. This system is composed of fine and coarse apparatus, measurement system and control system, Piezoelectric actuator is designed for fine positioning. Coarse positioning using lead screw is drived by DC servo motor. Control system output a signal from laser interferometer and microsense to amplifier of DC servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometor and microsense

  • PDF

The Design and Performance Test of Tracking Actuator for NFR system (근접장 기록 장치를 위한 트랙킹 구동기의 설계 및 실험)

  • Kim, Gi-Hyeon;Lee, Mun-Gu;Gwon, Dae-Gap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.174-181
    • /
    • 2001
  • Nowadays, the improvement and development of Multi-media and information & communication technology is rapidly processed. They need large data storage capacity. So that, many studies and researches in data storage have been carried out. According to them, the data storage capacity has been increased. But the limitation of storage capacity is happened for several problems. One of them is spot & pit size in optical and magnetic data storage and another is the resolution of actuators. The problems in spot & pit size are covered by new data storage methods-- for examples, AFM(Atomic Force Microscopy), MO(Magneto-optical) system, and NFR(Near-Field decoding) system etc. But the resolution limit of an actuator was not developed and doesn\`t follow up the development of spot & pit size. Because of them, we should improve a resolution of an actuator. Especially, in this paper an actuator if studied and designed for NFR (in using SIL(Solid Immersion Lens) system. It is a dual stage actuator, which consists of a Fine actuator and a Coarse actuator. and should desire 100nm accuracy. Its actuating force generation method is VCM(Voice Coil Motor). The Fine actuator is composed of 4-leaf springs and a bobbin wrapped by coil. The Coarse actuator has Coils and 3-Roller bearings. Also, The Characteristics of designed actuator for NFR system is estimated by Sine-Swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

Long Range and High Axial Load Capacity Nanopositioner Using Single Piezoelectric Actuator and Translating Supports

  • Juluri, Bala Krishna;Lin, Wu;Lim, Lennie E N
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Existing long range piezoelectric motors with friction based transmission mechanisms are limited by the axial load capacity. To overcome this problem, a new linear piezoelectric motor using one piezoelectric actuator combined with a novel stepping mechanism is reported in this paper. To obtain both long range and fine accuracy, dual positioning control strategy consisting of coarse positioning and fine positioning is used. Coarse positioning is used for long travel range by accumulating motion steps obtained by piezoelectric actuator. This is followed by fine positioning where required accuracy is obtained by fine motion displacement of piezoelectric actuator. This prototype is able to provide resolution of 20 nanometers and withstand a maximum axial load of 300N. At maximum load condition, the positioner can move forward to a travel distance of 5mm at a maximum speed of 0.4 mm/sec. This design of nanopositioner can be used in applications for ultra precision positioning and grinding operations where high axial force capacity is required.