• Title/Summary/Keyword: Fin thickness

Search Result 119, Processing Time 0.021 seconds

Analysis of Dimension-Dependent Threshold Voltage Roll-off and DIBL for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 및 DIBL 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.760-765
    • /
    • 2007
  • In this paper, the threshold voltage roll-off and drain induced barrier lowering(DIBL) have been analyzed for nano structure double gate FinFET. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics were used to calculate thermionic omission current, and WKB(Wentzel- Kramers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off and DIBL are very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects, and this process has to be developed.

Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine (가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화)

  • Lee, Seok-Hwan;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

Analytical Study on the Heat Transfer Characteristics of a Spirally Coiled Circular Fin-Tube Evaporator Operated Under Non-Frosting Conditions (무착상 조건에서 나선형 원형핀-튜브 증발기의 열전달 성능에 관한 해석적 연구)

  • Lee, Moo-Yeon;Kang, Tae-Hyung;Kim, Yong-Chan;Park, Jae-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • The objective of this study is to predict the heat-transfer performance of a spirally coiled circular fin-tube evaporator in which either R134a or R600a was used; this heat-transfer performance was predicted by varying the mass flow rate, inlet air temperature, air flow rate, and tube thickness. Mean deviation for the analytical model from the measured data was ${\pm}8.3%$. Simulation results revealed that at a given mass flow rate, the heat-transfer rate of the evaporator using R600a was higher than that usingR134a because the enthalpy of the former is higher than that of the latter at the given conditions. The heat-transfer rate of both refrigerants increased with an increase in the air flow rate and inlet air temperature but decreased with an increase in the tube thickness.

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

The Effect on the Heat Transfer According to Geometric Variation of Air-Fin Vaporizer with at Cryogenic Temperature (형상변화에 따른 초저온 공온식 기화기의 열전달 효과)

  • Lee, Sang-Chul;Shin, You-Sik;Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.581-587
    • /
    • 2007
  • At present time, LNG demand of the world is increasing and the piping line for NG transportation has been already installed in Korea. The air fm vaporizer is, however, required because of the transportation for remotely local areas. This paper numerically investigates on the heat transfer characteristics of relevant geometric variations of air-fin vaporizer which is heated by air not by sea water. This vaporizer must be designed in consideration of both efficiency and economics because air is relatively a little heat source. In this study, the pipe and the longitudinal fins are fundamental geometric considerations. Main parameters of geometry are the number, the thickness, and the length of the fins. Finally, the results of heat transfer effects are investigated with the characteristics of each parameter variation.

Threshold Voltage Modeling of Double-Gate MOSFETs by Considering Barrier Lowering

  • Choi, Byung-Kil;Park, Ki-Heung;Han, Kyoung-Rok;Kim, Young-Min;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • Threshold voltage ($V_{th}$) modeling of doublegate (DG) MOSFETs was performed, for the first time, by considering barrier lowering in the short channel devices. As the gate length of DG MOSFETs scales down, the overlapped charge-sharing length ($x_h$) in the channel which is related to the barrier lowering becomes very important. A fitting parameter ${\delta}_w$ was introduced semi-empirically with the fin body width and body doping concentration for higher accuracy. The $V_{th}$ model predicted well the $V_{th}$ behavior with fin body thickness, body doping concentration, and gate length. Our compact model makes an accurate $V_{th}$ prediction of DG devices with the gate length up to 20-nm.

Analysis of the Stedy and Unsteady Heat Conduction in the Cylinder Block Attached with Rectangular Fin (직사각형 휜이 부착된 실린더 블럭의 정상 및 비정상 열전도 해석)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1254-1263
    • /
    • 1990
  • The temperature distribution and heat flux of the inner cylinder wall of a 4-cycle turbocharged gasoline engine were calculated by a 2-dimensional coordinate transformation. Boundary conditions of the inner wall of the cylinder were taken from the results of diagnostic engine simulations. Results show that the ununiformity of inner wall temperature of the cylinder black can be reduced by a proper choice of the thickness of fin and the distance between two cylinder blocks.

Characteristics of Vortex Shedding behind a Circular Cylinder with Serrated Fins (Serrated Fin이 부착된 튜브의 와유출특성 연구)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.570-575
    • /
    • 2001
  • An experimental study is performed to investigate the characteristics of vortex shedding behind a circular cylinder with serrated fins using hot-wire anemometer. Strouhal numbers which are calculated using outer diameter of a circular cylinder with serrated fins are higher than that of a circular cylinder. Fin thickness and pitch are closely related with vortex shedding frequency and play increasing or decreasing vortex shedding after transient Reynolds numbers. Strouhal numbers using effective diameters which are proposed in this paper agree with that of a circular cylinder. After transient Reynolds number, a trend of Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter.

  • PDF

The Analysis of Optimum Design Parameters for a Flat-Plate solar Collector Through Computer Simulation (컴퓨터 시물레이션 에 의한 太陽熱 集熱器 의 最適設計 에 관한 硏究)

  • 조수원;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • In the utilization of solar energy most often a flat solar collector is used for solar heating, system. Since solar energy is absorbed through this solar collector, it is considered to be a most important part in the whole solar heating system. The purpose of the present investigation is to evaluate the influence of varying design parameters for thermal performances of flat-plate solar collector. By analysing these parameters, optimum design of solar collector would become possible. Specification of the existing solar collector are utilized in calculation as a starting point. Analysis is carried out numerically for "Unit Solar Collector" which is composed of fin and tube. Among design parameters. such parameters as mass flow rate per unit area, tube spacing and fin thickness are selected as variables in the computer simulation model. Results are presented for thermal performances of flat-plate solar collector for each important design parameters, so that predictions become possible through numerical analysis without performing experiments whenever it is required. required.

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF