• Title/Summary/Keyword: Filtered-X Least Mean Square Algorithm

Search Result 64, Processing Time 0.027 seconds

Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm (베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

Effects of Error Path Delay on Stability of the Filtered-x/Constrained Filtered-x LMS Algorithm

  • Na, Hee-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.43-46
    • /
    • 1998
  • Many of the active noise control system utilize a form of the least mean square(LMS) algorithm. This paper discusses the dependence of the convergence rate on the acoustic error path in the popular algorithm which is conventional "filtered-x LMS" and introduces new algorithm "constrained filtered-x LMS". The proposed method increase the convergence region regardless of the time-delay in the acoustic error path. In the algorithms, coefficients of the controller are adapted using the residuals of constrained structure which are defined in such a way that the control process become stationary. Advantages of constrained filtered-x LMS algorithm is illustrated by convergence analysis in the mean sense.

  • PDF

Active Noise Control by Using Wavelet Packet and Comparison Experiments (웨이브렛 패킷을 이용한 능동 소음제어 및 비교실험)

  • Jang, Jae-Dong;Kim, Young-Joong;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.547-554
    • /
    • 2007
  • This thesis presents a kind of active noise control(ANC) algorithm for reducing noise due to engine inside a car. The proposed control algorithm is, by using WP(Wavelet Packet), a one improving the instability due to delay of noise transmission and the lack of response ability for the rapid change of noise, which are defects of the existing FXLMS(Filtered-X Least Mean Square) algorithm. The chief character of this system is a thing that faster operation than the FXLMS is implemented by inserting WP in the secondary path. In other words, WP implements parallel operation. Then, the weights of filter in the adaptive algorithm will be updated faster. In addition, because WP have so excellent a resolution, they can process very minute noise. The efficiency of this control algorithm will be demonstrated in the matlab simulation and in the actual experiments by using a Labview program and a car.

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Experiments (MFXLMS 알고리즘을 이용한 전자기베어링계의 외란보상 제어기 - 실험)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • This paper illustrates the feasibility and the effectiveness of the disturbance feedforward compensation control proposed in the previous paper. The compensator is designed experimentally by means of the Multiple Filtered-x Least Mean Square algorithm. A 2-DOF active magnetic bearing system subject to base motion is built and the compensation control is applied. The experimental results demonstrate that the compensation control reduces the air-gap responses within 10$%$ of those by the feedback control alone without increasing the control inputs.

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Theory (MFXLMS 알고리즘을 이용한 전자기배어링계의 외란 보상 제어기 - 이론)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • In this paper, a disturbance feedforward compensator design technique is proposed for an active magnetic bearing system subject to base motion for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feedforward compensator design based on adaptive estimation by means of the Multiple Filtered-x least mean square(MFXLMS) algorithm is proposed. The performance and the effectiveness of the proposed technique will be presented in the succeeding paper in which the proposed technique is applied to a 2-DOF active magnetic bearing system subject to base motion.

A single sensor based active reflection control system using FxLMS algorithm (FxLMS를 이용한 단일 센서기반 능동 반향음 제어 시스템)

  • Kim, Jaepil;Ji, Youna;Park, Young cheol;Seo, Young soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This paper presents an active acoustic-reflection control algorithm based on a single sensor. The proposed algorithm operates in a system comprising a single sensor located nearby the reflective surface and a control transducer mounted on the reflective surface. First, the incident and reflected acoustic signals are separated from the sensor signal, and a control signal is generated using the separated signals. For the signal separation, the proposed algorithm requires the response of the reflection path which is estimated from the acoustic response between an external sound source and the sensor. Finally, the control filter is adjusted using the FxLMS (Filtered-x Least Mean Square) algorithm. To verify the effectiveness of the proposed algorithm, it was implemented in real time using a DSP (Digital Signal Processing) board, and the experimental results obtained in one-dimensional air-acoustic environment show that the reflections of the 1 kHz burst can be reduced by 11.6 dB.

The efficient implementation of the multi-channel active noise controller using a low-cost microcontroller unit (저가 microcontoller unit을 이용한 효율적인 다채널 능동 소음 제어기 구현)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-22
    • /
    • 2019
  • In this paper, we propose a method that can be applied to the efficient implementation of multi-channel active noise controller. Since the normalized MFxLMS (Modified Filtered-x Least Mean Square) algorithm for the multi-channel active noise control requires a large amount of computation, the difficulty has lied in implementing the algorithm using a low-cost MCU (Microcontoller Unit). We implement the multi-channel active noise controller efficiently by optimizing the software based on the features of the MCU. By maximizing the usage of single-cycle MAC (Multiply- Accumulate) operations and minimizing move operations of the delay memory, we can achieve more than 3 times the performance in the aspect of computational optimization, and by parellel processing using the auxillary processor included in the MCU, we can also obtain more than 4 times the performance. In addition, the usage of additional parts can be minimized by maximizing the usage of the peripherals embedded in the MCU.

Secondary Path Estimation Algorithm Based on Residual Music Canceller for Noise Cancelling Headphone (노이즈 캔슬링 헤드폰에 적합한 잔여 음악 제거기 기반의 2차 경로 추정 알고리즘)

  • Ji, Youna;Lee, Keunsang;Park, Youngcheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.377-384
    • /
    • 2015
  • An active noise control (ANC) algorithm for noise canceling headphone is proposed. In this study, the feedback ANC operated with the filtered-x least mean square algorithm (FxLMS) algorithm is used to attenuate the undesired noise. Also an adaptive residual music canceller (RMC) is proposed for enhancing the accuracy of the reference signal of the feedback ANC. Simulation results show that a high quality of music sound can be consistently achieved in a time-varying secondary path situation.

Active Noise Control using Constrained Filtered-x LMS Algorithm (제한 Filtered-x LMS 알고리즘을 이용한 능동 소음제어)

  • 나희승;박영진
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.485-493
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithms. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popularalgorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer simulations and experiments.

  • PDF

Experimental Design of Disturbance Compensation Control to Improve Stabilization Performance of Target Aiming System (표적지향 시스템의 안정화 성능 향상을 위한 실험적 외란 보상 제어기 설계)

  • Lim Jae-Keun;Kang Min-Sig;Lyou Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.897-905
    • /
    • 2006
  • This study considers an experimental design of disturbance compensation control to improve stabilization performance of main battle tanks. An adaptive non-parametric design technique based on the Filtered-x Least Mean Square(FXLMS) algorithm is applied in the consideration of model uncertainties. The optimal compensator is designed by two-step design procedures: determination of frequency response function of the disturbance compensator which can cancel the disturbance of series of single harmonics by using the FXLMS algorithm and determination of the compensator polynomial which can fit the frequency response function obtained in the first step optimally by using a curve fitting technique. The disturbance compensator is applied to a simple experimental gun-torsion bar-motor system which simulates gun driving servo-system. Along with experimental results, the feasibility of the proposed technique is illustrated. Experimental results demonstrate that the proposed control reduces the standard deviation of stabilization error to 47.6% that by feedback control alone. The directional properties of the FXLMS Algorithm such as the direction of convergence and its convergence speed are also verified experimentally.