• 제목/요약/키워드: Film Sensor

검색결과 1,244건 처리시간 0.024초

박막형 $SnO_2$가스 센서의 특성에 관한 연구 (A study on characteristics of thin film $SnO_2$ gas sensor)

  • 김상연;송준태
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.278-284
    • /
    • 1995
  • Thin fihn SnO$_{2}$ Gas Sensor was fabricated by electron-beam evaporation system and the target made by general firing method for the purpose of detecting gas components in air, especially methane gas. SnO$_{2}$ thin film was prepared on the polished alumina substrate which Pt interdigital electrode was precoated. The effects of annealing temperature and substrate temperature on the structural properties of SnO$_{2}$ thin film on glass were investigated using the X-ray diffraction. The good crystalline structure is formed when substrate temperature is 150[.deg. C] and annealing condition is 550[.deg. C], 1[hour]. And the sensing properties at various thickness of the SnO$_{2}$ thin film and the effects of PdCI$_{2}$ addition were also investigated. The good result is showed when the thickness is below 1000[.angs.] and the quantity of PdCI$_{2}$ addition is 4[wt%]. The thickness of SnO$_{2}$ thin film was measured by .alpha.-step and Elliopsometer.

  • PDF

가스 크로마토그래피를 부착한 표면탄성파 가스 센서 (Surface acoustic wave gas sensors by assembling gas chromatography column)

  • 유범근;박용욱;강종윤;윤석진;최두진;김진상
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.39-43
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as acetone, methanol, and ethanol by measuring phase shift of output signal. A delay-line by combining with a center frequency of 200 MHz was fabricated on S-T Quartz substrates. Using gas chromatography column, the selectivity of the SAW gas sensor were introduced. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. This SAW gas sensor system may be well suited for a high performance electronic nose system.

수용액 환경에서 수은 측정을 위한 로다민 기반의 광섬유 센서 개발 (Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments)

  • 이애리;김용일;김범규;박병기
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.173-177
    • /
    • 2014
  • A Rhodamine-based fiber-optic sensor has been developed to detect mercury ions in aqueous environments. The fiber-optic sensor was composed of a mercury-sensing thin film, plastic optical fibers, and a spectrometer. The mercury-sensing thin film with the synthesized Rhodamine derivatives was fabricated with Sol-Gel process. A light emitted by a light source is guided by plastic optical fibers into the thin film in an aqueous solution and a reflected light is analyzed with the spectrometer. The experiment exhibits that an absorbance in the thin film is increased as mercury concentration is increased in the solution and the absorbance by mercury is higher than that by other heavy metals. The fiber-optic sensor exhibits high chromogenic phenomenon of mercury ions among various heavy metals and the correlation between absorbance and mercury concentration in the aqueous environments.

곡면 유리 표면 위에서 박막 측온저항체 온도센서 어레이 제작 및 성능 평가 (Fabrication and Performance Evaluation of Thin Film RTD Temperature Sensor Array on a Curved Glass Surface)

  • 안철희;김형훈;박상후;손창민;고정상
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.34-39
    • /
    • 2011
  • This paper presents a novel direct fabrication method of the thin metal film RTD temperature sensor array on an arbitrary curved surface by using MEMS technology to measure a distributed temperature field up to $300^{\circ}C$ without disturbing a fluid flow. In order to overcome the difficulty in the three dimensional photography of sensor patterning, the UV pre-irradiated photosensitive dry film resist technology has been developed newly. This method was applied to the fabrication of the temperature sensor array on a glass tube, which is arranged parallel and transverse to a main flow. Gold was used as a temperature sensing material. The resistance change was measured in a thermally controlled oven by increasing the environmental temperature. The linear increase in resistance change and a constant slope were obtained. Also, the sensitivity of each RTD temperature sensor was evaluated.

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

Thick-film ammonia gas sensor with high sensitivity and excellent selectivity

  • Lee, Kyuchung;Ryu, Kwang-Ryul;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.22-25
    • /
    • 2004
  • A highly sensitive ammonia gas sensor using thick-film technology has been fabricated and examined. The sensing material of the gas sensor is FeOx-$WO_{3}-SnO_{2}$ oxide semiconductor. The sensor exhibits resistance increase upon exposure to low concentration of ammonia gas. The resistance of the sensor is decreased, on the other hand, for exposure to reducing gases such as ethyl alcohol, methane, propane and carbon monoxide. A novel method for detecting ammonia gas quite selectively utilizing a sensor array consisting of an ammonia gas sensor and a compensation element has been proposed and developed. The compensation element is a Pt-doped $WO_{3}-SnO_{2}$gas sensor which shows opposite direction of resistance change in comparison with the ammonia gas sensor upon exposure to ammonia gas. Excellent selectivity has been achieved using the sensor array having two sensing elements.

Development of an Array-Type Flexible Tactile Sensor Using PVDF and Flexible Circuitry

  • Kwon, Tae-Kyu;Yu, Kee-Ho;Yun, Myung-Jong;Lee, Seong-Cheol
    • 센서학회지
    • /
    • 제11권4호
    • /
    • pp.200-208
    • /
    • 2002
  • This paper represents the development of an array-type flexible tactile sensor using PVDF(polyvinylidene fluoride) film and flexible circuitry. The tactile sensor which has $8{\times}8$ taxels is made by using PVDF film and FPC(flexible printed circuit) technique. Experimental results on static and dynamic properties are obtained by applying arbitrary forces and frequencies generated by the shaker. In the static characteristics, the threshold and the linearity of the sensor are investigated. Also dynamic response of the sensor subjected to the variable frequencies is examined. The signals of a contact force to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. Finally, the signals are integrated for taking the force profile. The processed signals of the outputs of the sensor are visualized on a personal computer, the shape and force distribution of the contacted object are obtained using two and three-dimensional image in real time. The reasonable performance for the detection of contact state is verified through the experiment.

A Humidity Sensor Using an Electrochemically Prepared Poly(1,5-Diaminonaphthalene)Film

  • 박덕수;심윤보
    • 센서학회지
    • /
    • 제12권6호
    • /
    • pp.241-248
    • /
    • 2003
  • An electrochemical humidity sensor was fabricated with poly(1,5-diaminonaphthalene) film coated on a gap of two splitted gold electrodes, which were made by vacuum deposition. Response currents according to humidity were measured by the potential sweep method and chronoamperometry. The stability of the polymer film was improved by double step chronoamperometry using the applied voltage of ${\pm}0.5$ Vdc. The response time determined by the pulse technique was about ${\sim}50$ msec and the relative standard deviation of current response was within ${\pm}5.0%$. The response current of the film was intrinsically humidity dependent. The film exhibited a non-linear but reproducible response in ordinary range of relative humidity. The linear equations were $I(nA)=0.28{\times}%RH-1.01$ between 10 to 70 %RH and $I(nA)=6.05{\times}%RH-403.21$ between 70 to 90 %RH.

2축 로드셀을 이용한 박막평가장치의 설계 및 개발 (Design & development of a device for thin-film evaluation using a two-component loadcell)

  • 이정일;김종호;박연규;오희근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1448-1452
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin-film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the tangential forces simultaneously as the probe tip of the equipment approaches to the interface between thin-film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ${\sim}$ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester, the feasibility test was performed to evaluate the adhesive strength of thin-film.

  • PDF

단층 탄소나노튜브의 일산화질소 가스에 대한 감응특성과 열처리 효과 (NO Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect)

  • 김민주;윤광현;허증수
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.292-297
    • /
    • 2004
  • Carbon nanotubes (CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in ${\alpha}$-Terpinol($C_{10}H_{17}OH$) solution. The CNT tilms were fabricated by screen printing method on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NO response and recovery time. The CNT sensor with a heater was compared to that without a heater. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.