• Title/Summary/Keyword: Film Heater

Search Result 189, Processing Time 0.028 seconds

Detection of Blood Agent Gas Using $SnO_2$ Thin Film Gas Sensor

  • Choi, Nak-Jin;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Lee, Duk-Dong;Bahn, Tae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, thin film gas sensor based on tin oxide was fabricated to examine its characteristics. Target gas is acetonitrile ($CH_3$CN) which is a blood simulant for the chemical warfare agent. Sensing materials are SnO$_2$ SnO$_2$/Pt, and Sn/Pt with thickness from 1000 to 3000 $\AA$. The sensor consists of a sensing electrode with inter-digit (IDT) type in front side and a heater in rear side. Resistance changes of sensing materials are monitored on real time basis using a data acquisition board with a 12-bit analog to digital converter. Sensitivities are measured at different operating temperatures also with different gas concentrations and film thickness. The high sensitivity is obtained for Sn (3000 $\AA$)/Pt (30 $\AA$) at 30$0^{\circ}C$ for 3 ppm. Response and recovery times were about 40 and 160 s, respectively. Repetition measurements showed very good results with $\pm$3% in full scale range.

Thin Film Chromel-Alumel Multjunction Thermal Converter (박막형 크로멜-알루멜 다중접합 열전변환기)

  • Jung, In-Sik;Kim, Jin-Sup;Lee, Jung-Hee;Lee, Jong-Hyun;Shin, Jang-Kyoo;Park, Se-Il;Kwon, Sung-Won
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.9
    • /
    • pp.37-45
    • /
    • 1999
  • For the purpose of reducing the output voltage fluctuation of thin film multijunction thermal converter, EVANOHM alloy-S and chromel-alumel thermocouple were used as a thin film heater material and as a thermoelement of thrmopile, respectively. The temperature coefficient of the resistance of thin film EVANOHM alloy-S heater was about $1.4 {\times} 10^4/^{\circ}C$, which is very small compared to other materials, and thin film chromel-alumel thermocouple showed relatively small difference of the Seebeck coefficients about $38 {\mu}V/K$. The output voltage fluctuation of the thermal converter was about 0.06% for the initial 120 seconds in air and decreased considerably after preheating for 5 minutes or more. The respective AC-DC voltage and current transfer error ranges of the thermal converter were about ${\pm}$1.6 ppm and ${\pm}$0.7 ppm in the frequency range from 10Hz to 10 kHz and increased remarkably below 10 Hz or above 10 kHz.

  • PDF

Flexible Display Device with Organic Composite Film

  • Choi, Yang-Kyu;Yarimaga, Oktay;Kim, Tae-Won;Jung, Yun-Kyung;Park, Hyun-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1233-1236
    • /
    • 2008
  • This study presents the fabrication process and display characteristics of a flexible organic polymer display device that consists of a thin substrate of Polyether Sulfone, a multilayer serpentine-type microheater array that is fabricated on the substrate, and a UV-sensitive polydiacetylene (PDA)-polyvinyl alcohol (PVA) composite film. A retention time of one second is achieved with cell sizes of $500{\mu}m$ and $700{\mu}m$ with cell-to-cell distances of $100{\mu}m$ and $200{\mu}m$, respectively.

  • PDF

Fabrication of low power NO micro gas senor by using CMOS compatible process (CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작)

  • Shin, Han-Jae;Song, Kap-Duk;Lee, Hong-Jin;Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber (수냉식 수직평판 흡수기의 액막 열 및 물질전달에 관한 수치적 연구)

  • Thanh-Tong Phan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.593-602
    • /
    • 2004
  • This paper is a study on the model of simultaneous heat and mass transfer process in the absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. The model can predict temperature and concentration profiles as well as the effect of Reynolds number on them. Also. the variations of the absorption heat and mass fluxes. and the heat and mass transfer coefficients have been investigated. The numerical result shows that the interface temperature and concentration decrease as film Reynolds number does. The absorption heat and mass fluxes, and the heat and mass transfer coefficients get their maximum values adjacent to the inlet solution. Analyses on a constant wall temperature condition have been also carried out to exam the reliability of the present numerical method by comparing to previous investigations.

Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation (Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

Fabrication of Micro-heaters Using MgO as Medium Layer and It`s Application for Micro-Flowsensors (매개층 산화마그네슘막을 이용한 백금박막 미세발열체의 제작과 마이크로 유량센서에의 응용)

  • 홍석우;조정복;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.358-361
    • /
    • 1999
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD\`s and micro-heater on the Si substrate, in which MgO thin-films were used as medium layer in order to improve adhesion of Pt thin-films to SiO$_2$ layer The MgO layer improved adhesion of Pt thin-films to SiO$_2$` layer without any chemical reactions to Pt thin-films under high as gas flow rate and its conductivity increased due to increase of heat-loss from sensor to external. Output voltage was 82 mV at N2 flow rate of 2000 sccm/min, heating power of 1.2W. The respons time was about 100 msec when input flow was step-input

  • PDF

Properties of ITO Transparent Conducting Film by DC Magnetron Sputtering Method (DC 마그네트론 스퍼터법에 의한 ITO 투명전도막 특성)

  • Park, Kang-Il;Kim, Byung-Sub;Lim, Dong-Gun;Park, Gi-Yub;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.95-98
    • /
    • 2003
  • Tin doped indium oxide(ITO) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and deposition time on the electrical, optical and morphological properties were investigated experimentally. ITO films with the optimum growth conditions showed resistivity of $2.36{\times}10^{-4}(\Omega}-cm$ and transmittance of 86.28% for a film 680nm thick in the wavelength range of the visible spectrum.

  • PDF

ITO Films Deposited by Sputter Method of Powder Target at Room Temperature. (상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막)

  • 김현후;이재형;신성호;신재혁;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF

Design and Performance Evaluation of Extension-Type Actuators with a Displacement Amplification Mechanism Based on Chevron Beam

  • Jo, Yehrin;Lee, Euntaek;Kim, Yongdae
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, a new design of an extension-type actuator (ExACT) is proposed based on a chevron structure with displacement amplification mechanisms by local heating. ExACT comprises diamond-shaped displacement amplification structures (DASs) containing axially oriented V-shaped chevron beams, a support bar that restricts lateral heat deformation, and a loading slot for thin-film heaters. On heating the thin film heater, the diamond-shaped DASs undergo thermal expansion. However, lateral expansion is restricted by the support bar, leading to displacement amplification in the axial direction. The performance parameters of ExACT such as temperature distribution and extended displacement is calculated using thermo-mechanical analysis methods with the finite element method (FEM) tool. Subsequently, the ExACTs are fabricated using a polymer-based 3D printer capable of reproducing complex structures, and the performance of ExACTs is evaluated under various temperature conditions. Finally, the performance evaluation results were compared with those of the FEM analysis.