• Title/Summary/Keyword: Film Boiling

Search Result 158, Processing Time 0.024 seconds

An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet (충돌수분류의 천이 및 막비등열전달에 관한 연구)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater (단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구)

  • Park, Youngjae;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

The characteristics of heat transfer coefficient for falling-film evaporation on a horizontal tube with aqueous LiBr solution (LiBr 수용액의 수평관 유하액막 증발에 있어서의 열전달계수 특성)

  • Ji, Yong-Hae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.294-302
    • /
    • 1997
  • Falling-film evaporation experiments for aqueous solution of lithium bromide (LiBr) were performed on a horizontal smooth 19.05-mm-dia copper tube. Average heat transfer coefficients were obtained with varied film Reynolds numbers, system pressures, LiBr concentrations and degrees of wall superheat. Heat transfer coefficients increase with increasing system pressure and decreasing concentration. For degrees of wall superheat, the heat transfer coefficient did not't show the distinct trend. For this experimental ranges, heat transfer coefficients showed maximum values at an optimal film Reynolds number. The results of this work were compared with pool boiling data reported previously, and it was shown that the heat transfer performance is superior to the pool boiling.

A Study of Numerical Analysis on Wall Impinging Spray (벽면충돌분무에 관한 수치해석)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2013
  • Phenomenon of droplet impingement with high temperature wall needs to be investigated because atomization process of droplet and cooling process of the wall by the impingement are very important in industry, thus studies concerned with temperature of piston wall have been conducted in spray characteristics analysis of diesel engine. Hence, in this study, we defined $DT_{sat}(=T_w-T_{sat})$ superheat degree of the wall by difference between $T_w$ considering surface temperature of piston in the actual engine and $T_{sat}$ saturation temperature of the fuel and then investigated spray behavior of wall impinging with variance of the boiling process. In this study, in order to analyze wall impingement of droplet in accordance with difference of boiling condition, calculational conditions were set as $DT_{sat}=40K$(nucleate boiling), $DT_{sat}=140K$(transition boiling), and $DT_{sat}=240K$(film boiling). As a result, it can be found that fuel vapor increases and droplet mass decreases in the order of the nucleate boiling, transition boiling, and film boiling.

Thin Film Evaporation on Horizontal Plain Tubes (수평 평활관 외측의 액막 증발에 관한 연구)

  • Kim, J.O.;Kim, N.H.;Choi, K.K.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 1998
  • In this study, thin film evaporation of water on a horizontal plain tube is experimentally investigated. At a high heat flux, boiling of water is noticed inside the film. Once boiling occurs, evaporation heat transfer coefficient increases as the heat flux increases. In the non-boiling region, however, the heat transfer coefficient remains uniform irrespective of the heat flux. In this region, the heat transfer coefficient increases as the film flow rate increases. Comparison with existing correlations is also provided.

  • PDF

Experimental Study on Effect of Water-based Iron(III) Oxide Nanofluid on Minimum Film Boiling Point During Quenching of Highly Heated Test Specimen (고온 시편의 급랭 시 산화철 나노유체가 최소막비등점에 미치는 영향에 대한 실험적 연구)

  • Jeong, Chan Seok;Hwang, Gyeong Seop;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.128-136
    • /
    • 2020
  • In the present experimental study, the effect of water-based iron(III) oxide nanofluid on the MFB(Minimum Film Boiling) point during quenching was investigated. As the highly heated test specimen, the cylindrical stainless steel rod was used, and as the test fluids, the water-based iron(III) oxide nanofluids of 0.001 and 0.01 vol% concentrations were prepared with the pure water. To examine the effect of location in the test specimen, the thermocouples were installed at the bottom and middle of wall, and center in the test specimen. Through a series of experiments, the experimental data about the influences of nanofluid concentrations, the number of repeated experiments, and locations in the test specimen on the reaching time to MFB point, MFBT(Minimum Film Boiling Temperature), and MHF(Minimum Heat Flux) were obtained. As a result, with increasing the concentration of nanofluid and the number of repeated experiments, the reaching time to MFB point was reduced, but the MFBT and MHF were increased. In addition, it was found that the effect of water-based iron(III) oxide nanofluid on the MFB point at the bottom of wall in the test specimen was observed to be greater than that at the middle of wall and center. In the present experimental ranges, as compared with the pure water, the water-based iron(III) oxide nanofluid showed that the maximum reduction of reaching time to MFB point was about 53.6%, and the maximum enhancements of MFBT and MHF were about 31.1% and 73.4%, respectively.

A Study on Film Boiling Heat Transfer in a Forced Convective Flow System (강제대류계(强制對流系)에 있어서 막비등열전달(膜沸騰熱傳達)에 관한 연구(硏究))

  • Kim, Y.T.;Kwon, S.S.;Jung, D.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 1991
  • The aim of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The results of these experiments are as follows. 1. Temperature histories measured by the thermocouple, which is 0.99, 2.00, 2.99mm from the heat transfer surface showed monotonous during the cooling process. These variation are the curves of typical temperature histories in film-boiling, transition-boiling, and nucleate-boiling regions. 2. The temperature histories were measured by thermocouple installed in the copper block. The variations of the surface heat fluxes and surface temperature were computed from the numerical solution method TDMA from the measured temperature histories for radial position one dimensional heat transfer inverse problem. The boiling curves were found by the computed temperature histories. 3. The rewetting point which starts to change from film boiling to nucleate boiling is not connected with the mass velocity and it were found that the temperature of rewetting point indicated about $100^{\circ}C$. 4. The heat flux of rewetting point was about $10^5Kcal/m^2h$, at that time, the heat transfer coeficient indicated about $1000Kcal/m^2h^{\circ}C$ irrelevent to mass velocity. 5. The wall superheat decreases as the pressure increases. But I found that rewetting point appeared under higher condition in the wall temperature.

  • PDF

Experimental Study on Film Boiling Heat Transfer of Spray Cooling for Inclined heat transfer Surface (경사면에서의 분무냉각 막비등 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The film boiling heat transfer was experimentally investigated for the water sprays impacting on an inclined hot surface. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made for different inclination angles of $\theta=0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$. The experimental results show that, in the downstream region of the inclined hot surface, increasing the inclination angle increases the local heat flux slowly because of increasing the number of rebound droplets. However, the inclination angle of heat transfer surface had no remarkable effect on the local heat flux of spray cooling under the present test conditions.

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.