• Title/Summary/Keyword: File system

Search Result 2,276, Processing Time 0.026 seconds

A File/Directory Reconstruction Method of APFS Filesystem for Digital Forensics

  • Cho, Gyu-Sang;Lim, Sooyeon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2022
  • In this paper, we propose a method of reconstructing the file system to obtain digital forensics information from the APFS file system when meta information that can know the structure of the file system is deleted due to partial damage to the disk. This method is to reconstruct the tree structure of the file system by only retrieving the B-tree node where file/directory information is stored. This method is not a method of constructing nodes based on structural information such as Container Superblock (NXSB) and Volume Checkpoint Superblock (APSB), and B-tree root and leaf node information. The entire disk cluster is traversed to find scattered B-tree leaf nodes and to gather all the information in the file system to build information. It is a method of reconstructing a tree structure of a file/directory based on refined essential data by removing duplicate data. We demonstrate that the proposed method is valid through the results of applying the proposed method by generating numbers of user files and directories.

File Carving for Ext4 File System on Android OS (안드로이드 운영체제의 Ext4 파일 시스템에서 삭제 파일 카빙 기법)

  • Kim, Dohyun;Park, Jungheum;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.417-429
    • /
    • 2013
  • A lot of OS(Operating Systems) such as Linux and Android selected Ext4 as the official file system. Therefore, a recovery of deleted file from Ext4 is becoming a pending issue. In this paper, we suggest how to recover the deleted file by analyzing the entire structure of Ext4 file system, the study of metadata area, the distinct feature when file is assigned and deleted. Particularly, we focus on studying the features of file which is assigned in Ext4 file system in Android OS and also suggest the method to recover the deleted file that is fragmented from the un-allocated area.

Performance Analysis of Multimedia File System

  • Park, Jinyoun;Youjip Won;Jaideep Srivastava
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.100-102
    • /
    • 2001
  • Intensive I/O bandwidth demand of the multimedia streaming service puts significant burden on file system. Different from the legacy text based or image data, the semantics of the data in multimedia format can be significantly affected if the data block is not delivered by the predefined deadline. The legacy file system used in Unix or Unix like environment is designed to efficiently handle the files who sizes range from few hundreds of byte to several tens of gigabytes. This fundamental design philosophy results in the file system based on multi level skewed tree structure. Multi level i-node structure has significant drawback when the application performs sequential read operation. In this article, we present the result of the performance study of the file system which is specifically designed for handling multimedia streams. We implemented the file system on Linux Operating System environment and examines the performance behavior of the file system under streaming I/O workload. The result of the study shows that the proposed file system performs much more efficiently than the ext2 file system of Linux does.

Comparative Study on the Ability of Instruments to Maintain Original Canal Curvature of Continuous rotary System and Single File System (Continuous rotary system과 single file system의 만곡 근관 형태 유지능에 대한 비교 연구)

  • Park, Sang-Hee;Kim, Deok-Joong;Song, Yong-Beom;Lee, Hye-Yun;Kim, Hyoung-Sun;Lee, Kwang-Won;Yu, Mi-Kyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.371-383
    • /
    • 2012
  • Shaping the root canal system to maintain original canal curvature is essential to clinical success in endodontic treatment. Opposed to most root canals that are curved, endodontic instruments are made from straight metal blanks. They have a tendency of straightening the root canal during preparation and frequently result in procedural errors. A new treatment method to maintain original canal curvature during shaping has been introduced for preventing procedural errors. The aim of this study was to compare the ability of instruments to maintain original canal curvature of continuous rotary system and single file system. Thirty ISO 15, 0.02 taper, Endo Training Blocks(Dentsplay Maillefer) were used. Specimens were assigned to 1 of 3 groups for shaping: specimens in group 1 were shaped with ProFile #20/.06 at the WL. Specimens in group 2 were shaped with Mtwo #35/.04 at the WL. Specimens in group 3 were shaped with WaveOne Primary reciprocating files at the WL after the glide path was achieved with PathFile. Pre- and postinstrumentation digital images were superimposed and processed with Matlab r2010b(The MathWorks Inc, Natick, MA) software to analyze the curvature-radius ratio(CRr), representing canal curvature modification. Data for comparison on the ability of instruments to maintain original canal curvature depending on each Ni-Ti file were analyzed with 1-way ANOVA(P<.05). Data for comparison on the ability of instruments to maintain original canal curvature depending on each Ni-Ti file system were analyzed with independent t-test(P<.05). A statistically significant difference(P<0.05) was noted on each Ni-Ti file. ProFile and WaveOne instrumentations maintained the original canal curvature significantly better(P<0.05) than Mtwo file. There were no significant difference(P>0.05) between continuous rotary system and single file system. Under the conditions of this study, ProFile and WaveOne instruments maintained the original curvature significantly better than Mtwo file and were less modification of the canal curvature compared. There was no significant difference between continuous rotary system and single file system in shaping of simulated canals. As clinical practitioners, it may be advantages to use hybrid approach when root canal shapes depending on the design and usage of Ni-Ti files.

Optional Compression Algorithm Design for Efficient Space Utilization of the EXT3 File System (EXT3 파일 시스템의 효율적인 공간 활용을 위한 선택적 압축 알고리즘 설계)

  • Lee, Seong-Heon;Jang, Seung-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.633-636
    • /
    • 2011
  • In this paper, ordered mode of EXT3 file system offers to use an optional compression algorithm technique. If the system terminates abnormally or an error occurs, data which is being modified will be possibly damaged or a recovery of the existing data can be impossible. To overcome these problems, a journaling file system is used. Journaling file system manages by using an additional space called Journal. EXT3 file system is the most widely used journaling file system. In this paper, When performing a file writing of an existing EXT3 file system, it offers to use an optional compact algorithm technique for an efficient use of a space of storage device.

  • PDF

Dynamic Bitmap for Huge File System (대용량 파일시스템을 위한 동적 비트맵)

  • Kim, Gyeong-Bae;Lee, Yong-Ju;Park, Chun-Seo;Sin, Beom-Ju
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.287-294
    • /
    • 2002
  • In this paper we propose a new mechanism for file system using a dynamic bitmap assignment. While traditional file systems rely on a fixed bitmap structures for metadata such as super block, inode, and directory entries, the proposed file system allocates bitmap and allocation area depends on file system features. Our approach gives a solution of the problem that the utilization of the file system depends on the file size in the traditional file systems. We show that the proposed mechanism is superior in the efficiency of disk usage compared to the traditional mechanisms.

Fips : Dynamic File Prefetching Scheme based on File Access Patterns (Fips : 파일 접근 유형을 고려한 동적 파일 선반입 기법)

  • Lee, Yoon-Young;Kim, Chei-Yol;Seo, Dae-Wha
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.384-393
    • /
    • 2002
  • A Parallel file system is normally used to support excessive file requests from parallel applications in a cluster system, whereas prefetching is useful for improving the file system performance. This paper proposes a new prefetching method, Fips(dynamic File Prefetching Scheme based on file access patterms), that is particularly suitable for parallel scientific applications and multimedia web services in a parallel file system. The proposed prefetching method introduces a dynamic prefetching scheme to predict data blocks precisely in run-time although the file access patterns are irregular. In addition, it includes an algorithm to determine whether and when the prefetching is performed using the current available I/O bandwidth. Experimental results confirmed that the use of the proposed prefetching policy in a parallel file system produced a higher file system performance.

Analysis of File Time Change by File Manipulation of Linux System (리눅스 시스템에서의 파일 조작에 따른 시간변화 분석)

  • Yoo, Byeongyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.21-28
    • /
    • 2016
  • File Time information has a significant meaning in digital forensic investigation. File time information in Linux Ext4 (Extended File System 4) environment is the Access Time, Modification Time, Inode Change Time, Deletion Time and Creation Time. File time is variously changed by user manipulations such as creation, copy and edit. And, the study of file time change is necessary for evidence analysis. This study analyzes the change in time information of files or folders resulting from user manipulations in Linux operating system and analyzes ways to determine real time of malware infection and whether the file was modulation.

Implementation of the FAT32 File System using PLC and CF Memory (PLC와 CF 메모리를 이용한 FAT32 파일시스템 구현)

  • Kim, Myeong Kyun;Yang, Oh;Chung, Won Sup
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, the large data processing and suitable FAT32 file system for industrial system using a PLC and CF memory was implemented. Most of PLC can't save the large data in user data memory. So it's required to the external devices of CF memory or NAND flash memory. The CF memory is used in order to save the large data of PLC system. The file system using the CF memory is NTFS, FAT, and FAT32 system to configure in various ways. Typically, the file system which is widely used in industrial data storage has been implemented as modified FAT32. The conventional FAT 32 file system was not possible for multiple writing and high speed data accessing. The proposed file system was implemented by the large data processing module can be handled that the files are copied at the 40 bytes for 1msec speed logging and creating 8 files at the same time. In a sudden power failure, high reliability was obtained that the problem was solved using a power fail monitor and the non-volatile random-access memory (NVSRAM). The implemented large data processing system was applied the modified file system as FAT32 and the good performance and high reliability was showed.

The development of the high effective and stoppageless file system for high performance computing (High Performance Computing 환경을 위한 고성능, 무정지 파일시스템 구현)

  • Park, Yeong-Bae;Choe, Seung-Hwan;Lee, Sang-Ho;Kim, Gyeong-Su;Gong, Yong-Jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.395-401
    • /
    • 2004
  • In the current high network-centralized computing and enterprising environment, it is getting essential to transmit data reliably at very high rates. Until now previous client/server model based NFS(Network File System) or AFS(Andrew's Files System) have met the various demands but from now couldn't satisfy those of the today's scalable high-performance computing environment. Not only performance but data sharing service redundancy have risen as a serious problem. In case of NFS, the locking issue and cache cause file system to reboot and make problem when it is used simply as ip-take over for H/A service. In case of AFS, it provides file sharing redundancy but it is not possible until the storage supporting redundancy and equipments are prepared. Lustre is an open source based cluster file system developed to meet both demands. Lustre consists of three types of subsystems : MDS(Meta-Data Server) which offers the meta-data services, OST(Objec Storage Targets) which provide file I/O, and Lustre Clients which interact with OST and MDS. These subsystems with message exchanging and pursuing scalable high-performance file system service. In this paper, we compare the transmission speed of gigabytes file between Lustre and NFS on the basis of concurrent users and also present the high availability of the file system by removing more than one OST in operation.

  • PDF