• Title/Summary/Keyword: Filamentous media

Search Result 39, Processing Time 0.017 seconds

Variation of Filamentous Periphyton Chlorophyll-a in accordance with Water Velocity and Specific Surface Area of Media in Small Urban Stream (도시 소하천에서 유속, 비표면적에 따른 사상형 부착조류의 Chlorophyll-a 변화)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Lee, Saeromi;Oh, Ju Hyun;Ahn, Hosang;Song, Ho Myeon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.551-558
    • /
    • 2013
  • The feasibility of water supply as in-stream flow for Mangwall stream was analyzed in terms of water quality and cultivation periphyton using two different types of water resources (e.g., surface water and bank filtration from Han River basin) and three different types of media (e.g., tile, concrete and pebble). The concentrations of organic and inorganic contaminants from the bank filtration were lower than those from surface water by 17.5 - 55.0%. Using water samples collected from Mangwall stream, surface water, and bank filtration, chlorophyll-a, phaeopigment, and growth rate of periphyton were investigated. During 30 day incubation for each water sample, it was observed that filamentous cyanobacteria, Oscillatoriaceae, accounted for 98%, and water velocity of 5 cm/s was optimum for the in situ filamentous cyanobacteria growth. Also, it was deducted for water velocity and chl-a to have an inverse correlation. Meanwhile, the greater the specific surface area of media, the higher the concentration of chl-a. From these results, both water velocity and specific surface area of media should be considered as an combined parameter to deter the growth of filamentous cyanobacteria.

Physiological and Molecular Characterization of Cephaleuros virescens Occurring in Mango Trees

  • Vasconcelos, Camila Vilela;Pereira, Fabiola Teodoro;Duarte, Elizabeth Amelia Alves;de Oliveira, Thiago Alves Santos;Peixoto, Nei;Carvalho, Daniel Diego Costa
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.157-162
    • /
    • 2018
  • The objective of this work was to accomplish the isolation, molecular identification and characterizing the physiology of the causal agent of the algal spot in mango trees. For this purpose, the pathogen growth was assessed in different culture media, with subsequent observation and measurements of the filamentous cells. The molecular identification was made using mycelium obtained from leaf lesions and pure algae colonies grown in culture medium. Descriptions based on DNA sequencing indicated that the algae is Cephaleuros virescens. The algae must be isolated primarily in liquid medium for further pricking into agar medium. The highest mycelial growth average in Petri dishes occurred when the algae were grown in Trebouxia and BBM. Trebouxia enabled larger cells in the filamentous cells when compared to other culture media.

GST2 is Required for Nitrogen Starvation-Induced Filamentous Growth in Candida albicans

  • Lee, So-Hyoung;Chung, Soon-Chun;Shin, Jongheon;Oh, Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1207-1215
    • /
    • 2014
  • Candida albicans, the major human fungal pathogen, undergoes morphological transition from the budding yeast form to filamentous growth in response to nitrogen starvation. In this study, we identified a new function of GST2, whose expression was required for filamentous growth of C. albicans under nitrogen-limiting conditions. The Gst2p showed Gst activity and required response to oxidative stress. The ${\Delta}gst2$ mutant displayed predominantly yeast phase growth in low ammonium media. Such morphological defect of ${\Delta}gst2$ mutants was not rescued by overexpression of Mep2p, Cph1p, or Efg1p, but was rescued by either overexpression of a hyperactive $RAS1^{G13V}$ allele or through exogenous addition of cyclic AMP. In addition, the ${\Delta}gst2$ mutants had lower levels of RAS1 transcripts than wild-type cells under conditions of nitrogen starvation. These results were consistent with the Ras1-cAMP pathway as a possible downstream target of Gst2p. These findings suggest that Gst2p is a significant component of nitrogen starvation-induced filamentation in C. albicans.

A Novel Approach for Assessing the Proteolytic Potential of Filamentous Fungi on the Example of Aspergillus spp.

  • Anna Shestakova;Alexander Osmolovskiy;Viktoria Lavrenova;Daria Surkova;Biljana Nikolic;Zeljko Savkovic
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.457-464
    • /
    • 2023
  • Proteolytic enzymes produced by filamentous fungi can degrade various fibrous and globular proteins along with other metabolites that may also find application in biotechnology. In this study, the effect of proteolytic enzymes of 22 Aspergillus strains on various proteins was investigated using protein-containing diagnostic media. Subsequently, a new parameter estimating secreted proteinases specificity towards fibrous or globular proteins without its advanced biochemical research - index of severity of proteolytic action (ISPA) - was suggested. This index determines mycozymes specificity in following manner: its value increases with greater affinity to fibrous proteins, decreases if there is higher affinity to globular proteins. ISPA value was the lowest (0.52) for Aspergillus domesticus, indicating the highest specificity to globular proteins, the highest one (1.26) for A. glaucus, whose proteinases best hydrolyzed fibrous proteins. However, the highest overall proteolytic potential was observed for Aspergillus melleus. The ability to produce acid, alkali and extracellular pigments was evaluated for all isolated strains as well.

Roles of Fungal Volatiles from Perspective of Distinct Lifestyles in Filamentous Fungi

  • Farh, Mohamed El-Agamy;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.193-203
    • /
    • 2020
  • Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.

Lipase-producing Filamentous Fungi from Non-dairy Creamer Industrial Waste

  • Triyaswati, Desty;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.167-178
    • /
    • 2020
  • Lipase-producing fungi have been isolated from environments containing lipids. The non-dairy creamer industrial waste has a high amount of lipids so it is a potential source for the isolation of lipase-producing fungi. However, the study of fungi that secrete lipase from this industrial waste has not been reported. The purpose of this study was to obtain lipase-producing filamentous fungi from non-dairy creamer industrial waste. Mineral salt and potato dextrose agar were used as media for the isolation process. The qualitative screening was conducted using phenol red agar medium and the quantitative screening using broth medium containing glucose and olive oil. Isolates producing the highest amounts of lipase were identified with molecular methods. We found that 5 out of 19 isolated filamentous fungi are lipase producers. Further analysis showed that isolate Ms.11 produced the highest amount of lipase compared to others. Based on ITS sequence Ms.11 was identified as Aspergillus aculeatus. The lipase activity in medium containing 1% glucose + 1% olive oil at pH 7.0 and 30℃ after 96 and 120 h of incubation was 5.13 ± 0.30 U/ml and 5.22 ± 0.59 U/ml, respectively. The optimum lipase activity was found at pH 7.0, 30℃ and using methanol or ethanol in the reaction tube. Lipase was more stable at 20-30℃ and maintained 85% of its activity. It was concluded that isolate Ms.11 is a potential source of lipase that catalyzes transesterification reactions. Further studies are required to optimize lipase production to make the strain suitable for industry purposes.

Difference of Microorganisms Found in an Aerated submerged Biofilm Reactor with Different Plastic Media Terating Phenol Wastewater (페놀폐수를 처리하는 침적형 생물막 반응기에서 매질에 따른 미생물상의 차이)

  • 정재춘;차병훈
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.492-498
    • /
    • 1995
  • Net type polyvinylidene chloride (PVDC) media and cillium type polyethlene polypropylene (PEPP) media were installed in the aereted submerged biofilm reactors. Synthetic phenol wastewater for feed were made to contain 1,480 mg of phenol per liter of water. The organic loading range of reactors were 0.439-0.456 kg COD/m$_{3}$, 0.882 - 0.919 kg COD/m$_{3}$ and 1.199-1.339 kg COD/m$_{3}$. Comparing PVDC to PEPP media, the bacterial number found in biofilm on PEPP were slightly higher. With the low temperature (10$\circ$C), the number of bacteria was some what deceered. Number of bacterial strains identified from PVDC were 23 and those from PEPP were 42. Genera identified in the PVDC media were Flavobacterium (47.8%), Unidentified (17.6%), Pseudomonas (13.0%), Micrococcus (8.7%) and Beggratoa (8.7%). Genera identified in the PEPP media reactor were Pseudomonas (35.7%), Alcaligenes (19.0%), Aeromonas (14.33%) and Micrococcus (11.9%), In the steady, state, a filamentous bacteria, type 1701 was identified in all of the reactors. Paramecium sp. and fungi were present in the PVDC media reactor. While, Difflugia sp, Paramecium sp. and fungi were found in the PEPP media reactor. The low diversity of protozoa was ascribed to high concentration of phenol.

  • PDF

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.

Formation of Filamentous Crystal in Transformants of Pleurotus species (느타리버섯 형질전환주(形質轉換株)에서 Filamentous Crystal 형성(形成))

  • Byun, Myung-Ok;Cha, Dong-Yeul
    • The Korean Journal of Mycology
    • /
    • v.20 no.3
    • /
    • pp.216-221
    • /
    • 1992
  • Aerial crystalline filaments emerged from dense type of mycelia on some monokaryotic transformants of Pleurotus florida, P. ostreatus and P. sajorcaju. Cytstals were not dissolved in water but soluble in ethanol or at the temperature of higher than $80^{\circ}C$. Crystals were detected in the mycelia grown on the mushroom minimal medium as well as the mushroom complete medium. They were produced on both liquid media and agar plate. Although the mycelia incubated at $15-20^{\circ}C$, produced crystals, the mycelia incubated at $30-35^{\circ}C$ did not. Furthermore, crystal forming mycelia were obtained from monokaryotic basidiospore of P. ostreatus and P. sajor-caju by mutations (UV irradiation).

  • PDF

Removal of Heavy Metals by Cladophora sp. in Batch Culture: The Effect of Wet-mixed Solidified Soil (loess) on Bioremoval Capacities

  • Kim, Jin-Hee;Lee, Kyung-Lak;Kim, Sook-Chan;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2007
  • The heavy metal removal capacity of filamentous green alga Cladophora sp. cultured together with wet-mixed solidified soil (loess) was tested. A Cladophora sp. was cultured for 5d, with added Chu No. 10 medium, in stream water contaminated by high concentration of heavy metals from a closed mine effluent. Heavy metal ion concentrations of the medium and in algal tissue were measured every day during the experiment. Dissolved metals (Al, Cd, Cu, Fe, Mn, Zn) in medium were rapidly removed (over 90% elimination) within 1-2d when alga and loess were added. Dissolved heavy metals dropped by only 10% when algae were cultured without loess. The Cladophora sp. accumulated much more heavy metals when cultured with loess than when the alga was cultured alone. Cladophora sp. exhibited a maximum uptake capacity for Al ($17,000{\mu}g^{-1}$ algal dry weight). The metal bioremoval capacities of the algae were in the order Al, Fe, Cu, Mn, Zn and Cd. The heavy metal removal capacity of Cladophora sp. showed significant increases when wet-mixed solidified soil was added to culture media.