DOI QR코드

DOI QR Code

Roles of Fungal Volatiles from Perspective of Distinct Lifestyles in Filamentous Fungi

  • Farh, Mohamed El-Agamy (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Jeon, Junhyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
  • Received : 2020.02.11
  • Accepted : 2020.04.27
  • Published : 2020.06.01

Abstract

Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Amsterdam, The Netherlands. 952 pp.
  2. Ameztoy, K., Baslam, M., Sanchez-Lopez, A. M., Munoz, F. J., Bahaji, A., Almagro, G., Garcia-Gomez, P., Baroja-Fernandez, E., De Diego, N., Humplik, J. F., Ugena, L., Spichal, L., Dolezal, K., Kaneko, K., Mitsui, T., Cejudo, F. J. and Pozueta-Romero, J. 2019. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant Cell Environ. 42:2627-2644. https://doi.org/10.1111/pce.13601
  3. Baldrian, P. and Valaskova, V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32:501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  4. Barrero, A. F., Oltra, J. E., Herrador, M. M., Cabrera, E., Sanchez, J. F., Quilez, J. F., Rojas, F. J. and Reyes, J. F. 1993. Gibepyrones: $\alpha$-pyrones from Gibberella fujikuroi. Tetrahedron 49:141-150. https://doi.org/10.1016/S0040-4020(01)80514-7
  5. Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J. E., Kim, H. S., Brown, K. M. and Kang, S. 2015. Fusarium Oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front. Microbiol. 6:1248.
  6. Chen, J. L., Sun, S. Z., Miao, C. P., Wu, K., Chen, Y. W., Xu, L. H., Guan, H. L. and Zhao, L. X. 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 40:315-324. https://doi.org/10.1016/j.jgr.2015.09.006
  7. Clegg, C. J. and Mackean, D. G. 2000. Advanced biology: principles and applications. 2nd ed. John Murray, London, UK. 720 pp.
  8. Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V. J. and Raaijmakers, J. M. 2017. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front. Plant Sci. 8:1262. https://doi.org/10.3389/fpls.2017.01262
  9. Das, A., Lee, S.-H., Hyun, T. K., Kim, S.-W. and Kim, J.-Y. 2013. Plant volatiles as method of communication. Plant Biotechnol. Rep. 7:9-26. https://doi.org/10.1007/s11816-012-0236-1
  10. De Vega, C., Herrera, C. M. and Dotterl, S. 2014. Floral volatiles play a key role in specialized ant pollination. Perspect. Plant Ecol. Evol. Syst. 16:32-42. https://doi.org/10.1016/j.ppees.2013.11.002
  11. Dinis, M. J., Bezerra, R. M., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., Cone, J. W., Marques, G. S. M., Barros, A. R. N. and Rodrigues, M. A. M. 2009. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol. 100:4829-4835. https://doi.org/10.1016/j.biortech.2009.04.036
  12. Ditengou, F. A., Muller, A., Rosenkranz, M., Felten, J., Lasok, H., van Doorn, M. M., Legue, V., Palme, K., Schnitzler, J.-P. and Polle, A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6:6279. https://doi.org/10.1038/ncomms7279
  13. Ezra, D., Hess, W. M. and Strobel, G. A. 2004. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023-4031. https://doi.org/10.1099/mic.0.27334-0
  14. Felten, J., Kohler, A., Morin, E., Bhalerao, R. P., Palme, K., Martin, F., Ditengou, F. A. and Legue, V. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol. 151:1991-2005. https://doi.org/10.1104/pp.109.147231
  15. Fialho, M. B., Toffano, L., Pedroso, M. P., Augusto, F. and Pascholati, S. F. 2010. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J. Microbiol. Biotechnol. 26:925-932. https://doi.org/10.1007/s11274-009-0255-4
  16. Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jones, J. D. G., Davies, J. M. and Dolan, L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442-446. https://doi.org/10.1038/nature01485
  17. Fox, E. M. and Howlett, B. J. 2008. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11:481-487. https://doi.org/10.1016/j.mib.2008.10.007
  18. Garbeva, P., Hordijk, C., Gerards, S. and de Boer, W. 2014. Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5:289. https://doi.org/10.3389/fmicb.2014.00289
  19. Garnica-Vergara, A., Barrera-Ortiz, S., Munoz-Parra, E., Raya-Gonzalez, J., Mendez-Bravo, A., Macias-Rodriguez, L., Ruiz-Herrera, L. F. and Lopez-Bucio, J. 2016. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209:1496-1512. https://doi.org/10.1111/nph.13725
  20. Gomes, A. A., Pinho, D. B., Cardeal, Z. L., Menezes, H. C., De Queiroz, M. V. and Pereira, O. L. 2018. Simplicillium coffeanum, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. Phytotaxa 333:188-198. https://doi.org/10.11646/phytotaxa.333.2.2
  21. Hobbie, E. A., Macko, S. A. and Shugart, H. H. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353-360. https://doi.org/10.1007/s004420050736
  22. Holopainen, J. K. and Blande, J. D. 2012. Molecular plant volatile communication. In: Sensing in nature, ed. by C. Lopez-Larrea, pp. 17-31. Springer-Verlag, New York, USA.
  23. Hung, R., Lee, S. and Bennett, J. W. 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 6:19-26. https://doi.org/10.1016/j.funeco.2012.09.005
  24. Hung, R., Lee, S. and Bennett, J. W. 2015. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 99:3395-3405. https://doi.org/10.1007/s00253-015-6494-4
  25. Jalali, F., Zafari, D. and Salari, H. 2017. Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol. 29:67-75. https://doi.org/10.1016/j.funeco.2017.06.007
  26. Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B. and Jijakli, M. H. 2019. Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules 24:1065. https://doi.org/10.3390/molecules24061065
  27. Kai, M., Effmert, U. and Piechulla, B. 2016. Bacterial-plantinteractions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front. Microbiol. 7:108.
  28. Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151. https://doi.org/10.3389/fpls.2015.00151
  29. Kottb, M., Gigolashvili, T., Grosskinsky, D. K. and Piechulla, B. 2015. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front. Microbiol. 6:995. https://doi.org/10.3389/fmicb.2015.00995
  30. Kudalkar, P., Strobel, G., Riyaz-Ul-Hassan, S., Geary, B. and Sears, J. 2012. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319-325. https://doi.org/10.1007/s10267-011-0165-9
  31. Lee, S. O., Kim, H. Y., Choi, G. J., Lee, H. B., Jang, K. S., Choi, Y. H. and Kim, J.-C. 2009. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J. Appl. Microbiol. 106:1213-1219. https://doi.org/10.1111/j.1365-2672.2008.04087.x
  32. Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3:7. https://doi.org/10.1186/s40694-016-0025-7
  33. Li, N. and Kang, S. 2018. Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 9:166-175. https://doi.org/10.1080/21501203.2018.1448009
  34. Li, Z. T., Janisiewicz, W. J., Liu, Z., Callahan, A. M., Evans, B. E., Jurick, W. M. and Dardick, C. 2019. Exposure in vitro to an environmentally isolated strain TC09 of Cladosporium sphaerospermum triggers plant growth promotion, early flowering, and fruit yield increase. Front. Plant Sci. 9:1959. https://doi.org/10.3389/fpls.2018.01959
  35. McMillan, J. D. and Boynton, B. L. 1994. Arbinose utilization by xylose-fermenting yeasts and fungi. Appl. Biochem. Biotech. 45:569-584. https://doi.org/10.1007/BF02941831
  36. Mercier, J., Jimenez-Santamaria, J. I. and Tamez-Guerra, P. 2007. Development of the volatile-producing fungus Muscodor albus worapong, Strobel, and Hess as a novel antimicrobial biofumigantRev. Mex. Fitopatol. 25:173-179.
  37. Meshram, V., Kapoor, N. and Saxena, S. 2013. Muscodor kashayum sp. nov.: a new volatile anti-microbial producing endophytic fungus. Mycology 4:196-204. https://doi.org/10.1080/21501203.2013.877990
  38. Mishra, P., Singh, S. K. and Nilegaonkar, S. S. 2011. Extracellular chitinase production by some members of the saprophytic Entomophthorales group. Mycoscience 52:271-277. https://doi.org/10.1007/s10267-010-0090-3
  39. Morath, S. U., Hung, R. and Bennett, J. W. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26:73-83. https://doi.org/10.1016/j.fbr.2012.07.001
  40. Naznin, H. A., Kimura, M., Miyazawa, M. and Hyakumachi, M. 2013. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ. 28:42-49. https://doi.org/10.1264/jsme2.ME12085
  41. Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M. and Hyakumachi, M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 9:e86882. https://doi.org/10.1371/journal.pone.0086882
  42. Nicolotti, G. and Varese, G. C.1996. Screening of antagonistic fungi against air-borne infection by Heterobasidion annosum on Norway spruce. Forest Ecol. Manage. 88:249-257. https://doi.org/10.1016/S0378-1127(96)03844-3
  43. Overvoorde, P., Fukaki, H. and Beeckman, T. 2010. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2:a001537. https://doi.org/10.1101/cshperspect.a001537
  44. Paul, D. and Park, K. S. 2013. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969-13977. https://doi.org/10.3390/s131013969
  45. Pichersky, E., Noel, J. P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808-811. https://doi.org/10.1126/science.1118510
  46. Richard, F.-J. and Hunt, J. H. 2013. Intracolony chemical communication in social insects. Insect. Soc. 60:275-291. https://doi.org/10.1007/s00040-013-0306-6
  47. Rodriguez, R. J., White, J. F. Jr., Arnold, A. E. and Redman, R. S. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182:314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
  48. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
  49. Saini, S., Sharma, I., Kaur, N. and Pati, P. K. 2013. Auxin: a master regulator in plant root development. Plant Cell Rep. 32:741-757. https://doi.org/10.1007/s00299-013-1430-5
  50. Sanchez-Ortiz, B. L., Sanchez-Fernandez, R. E., Duarte, G., Lappe-Oliveras, P. and Macias-Rubalcava, M. L. 2016. Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J. Appl. Microbiol.120:1313-1325. https://doi.org/10.1111/jam.13101
  51. Schalchli, H., Tortella, G. R., Rubilar, O., Parra, L., Hormazabal, E. and Quiroz, A. 2016. Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit. Rev. Biotechnol. 36:144-152. https://doi.org/10.3109/07388551.2014.946466
  52. Schardl, C. L., Leuchtmann, A. and Spiering, M. J. 2004. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55:315-340. https://doi.org/10.1146/annurev.arplant.55.031903.141735
  53. Schausberger, P., Peneder, S., Jurschik, S. and Hoffmann, D. 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct. Ecol. 26:441-449. https://doi.org/10.1111/j.1365-2435.2011.01947.x
  54. Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J. and Garbeva, P. 2015. Volatile affairs in microbial interactions. ISME J. 9:2329-2335. https://doi.org/10.1038/ismej.2015.42
  55. Schmidt, R., Etalo, D. W., de Jager, V., Gerards, S., Zweers, H., de Boer, W. and Garbeva, P. 2016. Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6:1495.
  56. Schmidt, R., Jager, V., Zuhlke, D., Wolff, C., Bernhardt, J., Cankar, K., Beekwilder, J., Ijcken, W. V., Sleutels, F., Boer, W., Riedel, K. and Garbeva, P. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 7:862. https://doi.org/10.1038/s41598-017-00893-3
  57. Splivallo, R., Fischer, U., Gobel, C., Feussner, I. and Karlovsky, P. 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 150:2018-2029. https://doi.org/10.1104/pp.109.141325
  58. Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. and Bonfante, P. 2007. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 175:417-424. https://doi.org/10.1111/j.1469-8137.2007.02141.x
  59. Spraker, J. E., Jewell, K., Roze, L. V., Scherf, J., Ndagano, D., Beaudry, R., Linz, J. E., Allen, C. and Keller, N. P. 2014. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J. Chem. Ecol. 40:502-513. https://doi.org/10.1007/s10886-014-0432-2
  60. Stinson, A. M., Zidack, N. K., Strobel, G. A. and Jacobsen, B. J. 2003a. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis. 87:1349-1354. https://doi.org/10.1094/PDIS.2003.87.11.1349
  61. Stinson, M., Ezra, D., Hess, W. M., Sears, J. and Strobel, G. 2003b. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci.165:913-922. https://doi.org/10.1016/S0168-9452(03)00299-1
  62. Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81:187-193. https://doi.org/10.1016/j.mimet.2010.03.011
  63. Streiblova, E., Gryndlerova, H. and Gryndler, M. 2012. Truffle brule: an efficient fungal life strategy. FEMS Microbiol. Ecol. 80:1-8. https://doi.org/10.1111/j.1574-6941.2011.01283.x
  64. Strobel, G. 2006. Harnessing endophytes for industrial microbiology. Curr. Opin. Microbiol. 9:240-244. https://doi.org/10.1016/j.mib.2006.04.001
  65. Strobel, G. A., Dirkse, E., Sears, J. and Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943-2950. https://doi.org/10.1099/00221287-147-11-2943
  66. Strobel, G., Manker, D. C. and Mercier, J. 2005. Endophytic fungi and methods of use. U.S. Patent No. US 6,911,338 B2. U.S. Patent and Trademark Office, Washington, DC, USA.
  67. Sun, X.-G., Bonfante, P. and Tang, M. 2015. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation. Plant Physiol. Biochem. 97:1-10. https://doi.org/10.1016/j.plaphy.2015.09.010
  68. Suwannarach, N., Bussaban, B., Nuangmek, W., Pithakpol, W., Jirawattanakul, B., Matsui, K. and Lumyong, S. 2016. Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J. Sci. Food Agric. 96:339-345. https://doi.org/10.1002/jsfa.7099
  69. Ueda, H., Kikuta, Y. and Matsuda, K. 2012. Plant communication: mediated by individual or blended VOCs? Plant Signal. Behav. 7:222-226. https://doi.org/10.4161/psb.18765
  70. Ulloa-Benitez, A., Medina-Romero, Y. M., Sanchez-Fernandez, R. E., Lappe-Oliveras, P., Roque-Flores, G., Duarte Lisci, G., Herrera Suarez, T. and Macias-Rubalcava, M. L. 2016. Phytotoxic and antimicrobial activity of volatile and semivolatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J. Appl. Microbiol.121:380-400. https://doi.org/10.1111/jam.13174
  71. Vashishta, B. R., Sinha, A. K. and Kumar, A. 2016. Botany for degree students: fungi. Rev. ed. S. Chand and Company, New Delhi, India. 794 pp.
  72. Vespermann, A., Kai, M. and Piechulla, B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639-5641. https://doi.org/10.1128/AEM.01078-07
  73. Wenke, K., Kai, M. and Piechulla, B. 2010. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499-506. https://doi.org/10.1007/s00425-009-1076-2
  74. Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8:71-126. https://doi.org/10.2174/1874437001408010071
  75. Yamagiwa, Y., Inagaki, Y., Ichinose, Y., Toyoda, K., Hyakumachi, M. and Shiraishi, T. 2011. Talaromyces wortmannii FS2 emits $\beta$-caryphyllene, which promotes plant growth and induces resistance. J. Gen. Plant Pathol. 77:336-341. https://doi.org/10.1007/s10327-011-0340-z