Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.02.2020.0025

Roles of Fungal Volatiles from Perspective of Distinct Lifestyles in Filamentous Fungi  

Farh, Mohamed El-Agamy (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Jeon, Junhyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.36, no.3, 2020 , pp. 193-203 More about this Journal
Abstract
Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.
Keywords
environmental VOCs; lifestyles; volatile compounds;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schmidt, R., Jager, V., Zuhlke, D., Wolff, C., Bernhardt, J., Cankar, K., Beekwilder, J., Ijcken, W. V., Sleutels, F., Boer, W., Riedel, K. and Garbeva, P. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 7:862.   DOI
2 Splivallo, R., Fischer, U., Gobel, C., Feussner, I. and Karlovsky, P. 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 150:2018-2029.   DOI
3 Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. and Bonfante, P. 2007. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 175:417-424.   DOI
4 Spraker, J. E., Jewell, K., Roze, L. V., Scherf, J., Ndagano, D., Beaudry, R., Linz, J. E., Allen, C. and Keller, N. P. 2014. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J. Chem. Ecol. 40:502-513.   DOI
5 Stinson, A. M., Zidack, N. K., Strobel, G. A. and Jacobsen, B. J. 2003a. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis. 87:1349-1354.   DOI
6 Stinson, M., Ezra, D., Hess, W. M., Sears, J. and Strobel, G. 2003b. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci.165:913-922.   DOI
7 Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81:187-193.   DOI
8 Streiblova, E., Gryndlerova, H. and Gryndler, M. 2012. Truffle brule: an efficient fungal life strategy. FEMS Microbiol. Ecol. 80:1-8.   DOI
9 Strobel, G. 2006. Harnessing endophytes for industrial microbiology. Curr. Opin. Microbiol. 9:240-244.   DOI
10 Strobel, G. A., Dirkse, E., Sears, J. and Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943-2950.   DOI
11 Strobel, G., Manker, D. C. and Mercier, J. 2005. Endophytic fungi and methods of use. U.S. Patent No. US 6,911,338 B2. U.S. Patent and Trademark Office, Washington, DC, USA.
12 Sun, X.-G., Bonfante, P. and Tang, M. 2015. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation. Plant Physiol. Biochem. 97:1-10.   DOI
13 Suwannarach, N., Bussaban, B., Nuangmek, W., Pithakpol, W., Jirawattanakul, B., Matsui, K. and Lumyong, S. 2016. Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J. Sci. Food Agric. 96:339-345.   DOI
14 Ueda, H., Kikuta, Y. and Matsuda, K. 2012. Plant communication: mediated by individual or blended VOCs? Plant Signal. Behav. 7:222-226.   DOI
15 Ulloa-Benitez, A., Medina-Romero, Y. M., Sanchez-Fernandez, R. E., Lappe-Oliveras, P., Roque-Flores, G., Duarte Lisci, G., Herrera Suarez, T. and Macias-Rubalcava, M. L. 2016. Phytotoxic and antimicrobial activity of volatile and semivolatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J. Appl. Microbiol.121:380-400.   DOI
16 Vashishta, B. R., Sinha, A. K. and Kumar, A. 2016. Botany for degree students: fungi. Rev. ed. S. Chand and Company, New Delhi, India. 794 pp.
17 Yamagiwa, Y., Inagaki, Y., Ichinose, Y., Toyoda, K., Hyakumachi, M. and Shiraishi, T. 2011. Talaromyces wortmannii FS2 emits $\beta$-caryphyllene, which promotes plant growth and induces resistance. J. Gen. Plant Pathol. 77:336-341.   DOI
18 Vespermann, A., Kai, M. and Piechulla, B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639-5641.   DOI
19 Wenke, K., Kai, M. and Piechulla, B. 2010. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499-506.   DOI
20 Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8:71-126.   DOI
21 Barrero, A. F., Oltra, J. E., Herrador, M. M., Cabrera, E., Sanchez, J. F., Quilez, J. F., Rojas, F. J. and Reyes, J. F. 1993. Gibepyrones: $\alpha$-pyrones from Gibberella fujikuroi. Tetrahedron 49:141-150.   DOI
22 Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Amsterdam, The Netherlands. 952 pp.
23 Ameztoy, K., Baslam, M., Sanchez-Lopez, A. M., Munoz, F. J., Bahaji, A., Almagro, G., Garcia-Gomez, P., Baroja-Fernandez, E., De Diego, N., Humplik, J. F., Ugena, L., Spichal, L., Dolezal, K., Kaneko, K., Mitsui, T., Cejudo, F. J. and Pozueta-Romero, J. 2019. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant Cell Environ. 42:2627-2644.   DOI
24 Baldrian, P. and Valaskova, V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32:501-521.   DOI
25 Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J. E., Kim, H. S., Brown, K. M. and Kang, S. 2015. Fusarium Oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front. Microbiol. 6:1248.
26 Das, A., Lee, S.-H., Hyun, T. K., Kim, S.-W. and Kim, J.-Y. 2013. Plant volatiles as method of communication. Plant Biotechnol. Rep. 7:9-26.   DOI
27 Chen, J. L., Sun, S. Z., Miao, C. P., Wu, K., Chen, Y. W., Xu, L. H., Guan, H. L. and Zhao, L. X. 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 40:315-324.   DOI
28 Clegg, C. J. and Mackean, D. G. 2000. Advanced biology: principles and applications. 2nd ed. John Murray, London, UK. 720 pp.
29 Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V. J. and Raaijmakers, J. M. 2017. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front. Plant Sci. 8:1262.   DOI
30 De Vega, C., Herrera, C. M. and Dotterl, S. 2014. Floral volatiles play a key role in specialized ant pollination. Perspect. Plant Ecol. Evol. Syst. 16:32-42.   DOI
31 Dinis, M. J., Bezerra, R. M., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., Cone, J. W., Marques, G. S. M., Barros, A. R. N. and Rodrigues, M. A. M. 2009. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol. 100:4829-4835.   DOI
32 Ditengou, F. A., Muller, A., Rosenkranz, M., Felten, J., Lasok, H., van Doorn, M. M., Legue, V., Palme, K., Schnitzler, J.-P. and Polle, A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6:6279.   DOI
33 Ezra, D., Hess, W. M. and Strobel, G. A. 2004. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023-4031.   DOI
34 Fox, E. M. and Howlett, B. J. 2008. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11:481-487.   DOI
35 Felten, J., Kohler, A., Morin, E., Bhalerao, R. P., Palme, K., Martin, F., Ditengou, F. A. and Legue, V. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol. 151:1991-2005.   DOI
36 Fialho, M. B., Toffano, L., Pedroso, M. P., Augusto, F. and Pascholati, S. F. 2010. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J. Microbiol. Biotechnol. 26:925-932.   DOI
37 Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jones, J. D. G., Davies, J. M. and Dolan, L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442-446.   DOI
38 Garbeva, P., Hordijk, C., Gerards, S. and de Boer, W. 2014. Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5:289.   DOI
39 Garnica-Vergara, A., Barrera-Ortiz, S., Munoz-Parra, E., Raya-Gonzalez, J., Mendez-Bravo, A., Macias-Rodriguez, L., Ruiz-Herrera, L. F. and Lopez-Bucio, J. 2016. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209:1496-1512.   DOI
40 Gomes, A. A., Pinho, D. B., Cardeal, Z. L., Menezes, H. C., De Queiroz, M. V. and Pereira, O. L. 2018. Simplicillium coffeanum, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. Phytotaxa 333:188-198.   DOI
41 Hung, R., Lee, S. and Bennett, J. W. 2015. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 99:3395-3405.   DOI
42 Hobbie, E. A., Macko, S. A. and Shugart, H. H. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353-360.   DOI
43 Holopainen, J. K. and Blande, J. D. 2012. Molecular plant volatile communication. In: Sensing in nature, ed. by C. Lopez-Larrea, pp. 17-31. Springer-Verlag, New York, USA.
44 Hung, R., Lee, S. and Bennett, J. W. 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 6:19-26.   DOI
45 Jalali, F., Zafari, D. and Salari, H. 2017. Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol. 29:67-75.   DOI
46 Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B. and Jijakli, M. H. 2019. Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules 24:1065.   DOI
47 Kai, M., Effmert, U. and Piechulla, B. 2016. Bacterial-plantinteractions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front. Microbiol. 7:108.
48 Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151.   DOI
49 Kottb, M., Gigolashvili, T., Grosskinsky, D. K. and Piechulla, B. 2015. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front. Microbiol. 6:995.   DOI
50 Kudalkar, P., Strobel, G., Riyaz-Ul-Hassan, S., Geary, B. and Sears, J. 2012. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319-325.   DOI
51 Lee, S. O., Kim, H. Y., Choi, G. J., Lee, H. B., Jang, K. S., Choi, Y. H. and Kim, J.-C. 2009. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J. Appl. Microbiol. 106:1213-1219.   DOI
52 Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3:7.   DOI
53 Li, N. and Kang, S. 2018. Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 9:166-175.   DOI
54 Li, Z. T., Janisiewicz, W. J., Liu, Z., Callahan, A. M., Evans, B. E., Jurick, W. M. and Dardick, C. 2019. Exposure in vitro to an environmentally isolated strain TC09 of Cladosporium sphaerospermum triggers plant growth promotion, early flowering, and fruit yield increase. Front. Plant Sci. 9:1959.   DOI
55 McMillan, J. D. and Boynton, B. L. 1994. Arbinose utilization by xylose-fermenting yeasts and fungi. Appl. Biochem. Biotech. 45:569-584.   DOI
56 Mercier, J., Jimenez-Santamaria, J. I. and Tamez-Guerra, P. 2007. Development of the volatile-producing fungus Muscodor albus worapong, Strobel, and Hess as a novel antimicrobial biofumigantRev. Mex. Fitopatol. 25:173-179.
57 Meshram, V., Kapoor, N. and Saxena, S. 2013. Muscodor kashayum sp. nov.: a new volatile anti-microbial producing endophytic fungus. Mycology 4:196-204.   DOI
58 Naznin, H. A., Kimura, M., Miyazawa, M. and Hyakumachi, M. 2013. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ. 28:42-49.   DOI
59 Mishra, P., Singh, S. K. and Nilegaonkar, S. S. 2011. Extracellular chitinase production by some members of the saprophytic Entomophthorales group. Mycoscience 52:271-277.   DOI
60 Morath, S. U., Hung, R. and Bennett, J. W. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26:73-83.   DOI
61 Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M. and Hyakumachi, M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 9:e86882.   DOI
62 Nicolotti, G. and Varese, G. C.1996. Screening of antagonistic fungi against air-borne infection by Heterobasidion annosum on Norway spruce. Forest Ecol. Manage. 88:249-257.   DOI
63 Overvoorde, P., Fukaki, H. and Beeckman, T. 2010. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2:a001537.   DOI
64 Paul, D. and Park, K. S. 2013. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969-13977.   DOI
65 Pichersky, E., Noel, J. P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808-811.   DOI
66 Richard, F.-J. and Hunt, J. H. 2013. Intracolony chemical communication in social insects. Insect. Soc. 60:275-291.   DOI
67 Sanchez-Ortiz, B. L., Sanchez-Fernandez, R. E., Duarte, G., Lappe-Oliveras, P. and Macias-Rubalcava, M. L. 2016. Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J. Appl. Microbiol.120:1313-1325.   DOI
68 Rodriguez, R. J., White, J. F. Jr., Arnold, A. E. and Redman, R. S. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182:314-330.   DOI
69 Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.   DOI
70 Saini, S., Sharma, I., Kaur, N. and Pati, P. K. 2013. Auxin: a master regulator in plant root development. Plant Cell Rep. 32:741-757.   DOI
71 Schalchli, H., Tortella, G. R., Rubilar, O., Parra, L., Hormazabal, E. and Quiroz, A. 2016. Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit. Rev. Biotechnol. 36:144-152.   DOI
72 Schardl, C. L., Leuchtmann, A. and Spiering, M. J. 2004. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55:315-340.   DOI
73 Schausberger, P., Peneder, S., Jurschik, S. and Hoffmann, D. 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct. Ecol. 26:441-449.   DOI
74 Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J. and Garbeva, P. 2015. Volatile affairs in microbial interactions. ISME J. 9:2329-2335.   DOI
75 Schmidt, R., Etalo, D. W., de Jager, V., Gerards, S., Zweers, H., de Boer, W. and Garbeva, P. 2016. Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6:1495.