• 제목/요약/키워드: Filament Winding

검색결과 171건 처리시간 0.023초

필라멘트 와인딩 복합재 CNG 압력용기의 최적설계 (Optimal Design of Filament Wound Composite CNG Pressure Vessel)

  • 윤영복;조성원;하성규
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2002
  • Abstract The optimization is performed to reduce the mass of CNG pressure vessel reinforced with composite materials in the hoop direction. An axisymmetric shell element which takes into account the layered liner and hoop composite materials is thus developed and incorporated into a program Axicom. The accuracy of the program is then verified using the 4 noded element in ANSYS. Three different cases of optimization are then performed using the Axicom: (1) uniform hoop thickness, (2) varying hoop thickness, and (3) varying the ply angles and accordingly the thickness. Compared with a traditional method, cases (2) and (3) were found to be very effective in reducing the thickness and cost of the hoop composite materials by about 80% without sacrificing the safety factors.

하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발 (Development of Hybrid FRP-Concrete Composite Pile Connection)

  • 이형규;박준석
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향 (The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel)

  • 강기원;김용수;이미애;최린
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

FRP-콘크리트 합성말뚝 시편의 압축강도실험 (Compression Strength Test of FRP Reinforced Concrete Composite Pile)

  • 이영근;최진우;박준석;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제2권4호
    • /
    • pp.19-27
    • /
    • 2011
  • 이 연구는 새로운 형태의 FRP-콘크리트 합성말뚝인 하이브리드 CFFT(HCFFT)를 개발하는 과정의 일부이다. 이 논문에서는 CFFT와 HCFFT의 압축강도실험을 통하여 구조적 거동을 분석하였다. 압축강도실험에 앞서 PFRP와 FFRP 재료의 역학적 성질을 조사하였다. HCFFT 압축강도실험은 콘크리트 강도와 FFRP의 두께를 변수로 하여 실험을 수행하였다. 그리고, FFRP 두께를 변수로 PFRP를 제외한 CFFT 실험체를 제작하고 실험을 수행하여 HCFFT와 비교 분석하였다. 실험 결과, HCFFT의 압축강도는 CFFT에 비하여 11~47% 향상되는 것으로 나타났다. 실험구간내의 필라멘트 와인딩 FRP 보강두께의 증가에 따른 HCFFT의 압축강도는 선형으로 증가시키는 것으로 나타났다. 또한 실험체와 동일한 조건의 유한요소해석을 수행하였다. 해석결과는 실험결과에 비하여 모든 시편에서 약간 작은 값을 보였으며, 0.14%에서 17.95%까지의 오차범위 내에 있음을 알 수 있었다.

전기절연용 FRP의 와인딩 각도에 따른 강도특성 (Strength of Insulator FRP Rod According to the Winding of Glass Fiber)

  • 박효열;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.586-588
    • /
    • 2001
  • Inner part of FRP specimen was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method to study the effect of fiber orientatons on the strength of FRP. The strength of bending and compression was simulated and evaluated. The results of simulated strength and evaluated strength were different greately each other. The stress which affect the feature of FRP was simulated to investigate the difference of the results between simulation and evaluation Shear stresses were investigated to the main stress to affect the fracture of FRP.

  • PDF

섬유의 배향에 따른 FRP의 압축강도 (Compressive Strength of FRP in Variation with Fiber Orientation)

  • 박효열;안명상;나문경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1349-1350
    • /
    • 2006
  • FRP has been used much for core materials of insulator. FRP consists of fiber and plastics(resin and binder). The fiber contributes strength to FRP. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. The direction of applied stress of FRP is different from the kinds of insulators. In this study, inner part of FRP rod was made unidirectionally by pultrusion method and outer part of FRP rod was made by filament winding method. Compressive strength and stress of FRP rods were simulated according to the winding orientation of glass fiber. Simulated value and real evaluated compressive strength were compared each other.

  • PDF

배전용 FRP전주의 기계적 및 환경성능 (Mechanical and Environment Ability of FRP Pole for a Distribution Line)

  • 박기호;조한구;한동희;이웅선;송일근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.395-398
    • /
    • 2000
  • In this study mechanical and environment ability of FRP pole for a distribution line about high strength and good insulation properties. The basic filament winding process creates a helical winding pattern. In mechanical analysis of splice with mechanical fastened joint it is important to evaluate a critical load of faster having maximum stress. It is also present a result of several examples to compare this with analytical one. On repair design this finite element method will be used as basis. The influence of environmental factors, such as elevated temperatures, high humidity, and corrosive fluids, and ultraviolet(UV) rays, upon the performance of polymeric matrix composite is of concern in many applications.

  • PDF

SPH 기법을 활용한 Type 4 복합재료 압력용기 낙하 충격 해석 (Fall Impact Analysis of Type 4 Composite Pressure Vessels Using SPH Techniques)

  • 송귀남;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.172-179
    • /
    • 2021
  • The drop impact analysis was carried out on Type 4 pressure containers, and the degree of damage to the falling environment was predicted and determined using smoothed particle hydrodynamics (SPH) techniques. The purpose of the design and the optimization process of the winding pattern of the pressure vessel of the composite material is to verify the safety of the container in actual use. Finally, an interpretation process that can be implemented in accordance with domestic test standards can be established to reduce the cost of testing and containers through pre-test interpretation. The research on the fall analysis of pressure vessels of composite materials was conducted using Abaqus, and optimization was conducted using ISIGHT. As a result, the safety of composite pressure vessels in the falling environment was verified.

두꺼운 복합재료 실린더의 생산 및 열응력 해석 (Continuous Curing and Residual Stresses of Thick Composite Cylinders)

  • 김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.49-52
    • /
    • 2000
  • A new composite manufacturing technique which combines winding and curing together is studied and analyzed. This method is especially suited to the manufacture of thick composite materials in which thermal spiking is a common problem. An experimental apparatus was designed and built for use with a filament winder to continuously cure a thick composite cylinder. A hoop-wound composite cylinder with 152 mm wall thickness was manufactured and embedded thermocouples and strain gages were monitored throughout the cure process. The experimental data were compared with analytical results.

  • PDF

PET 絲의 물성 편차에 관한 연구(V) (A Study on Variation of Physical Properties of the PET Filament Yarn (V))

  • 홍성대;김승진;심승범;김소연;김연숙;박미영
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.328-328
    • /
    • 2002
  • PET 絲의 특성은 중합단계나 방사, 연신 등의 원사제조공정의 공정조건뿐 아니라 사가공 공정을 거쳐 winding, 2-for-1 twisting, sizing등의 제직준비 공정과 제직 공정에 의해서 물리적인 특성이 크게 변화한다. 이러한 공정을 거치면서 품질과 성능변화에 절대적인 영향을 미치는 공정요소는 온도, 시간 그리고 장력이다(37). PET 絲는 공정을 거치면서 역학적 특성이나 열적 특성의 차이로 인해 공정관리 면에서 middle stream의 중소기업들이 시행착오에 의해 공정조건을 결정하는 현실에 처해있다. (중략)

  • PDF