• Title/Summary/Keyword: Filament Winding

Search Result 171, Processing Time 0.028 seconds

Compression and Bending Test for the Stiffness of Composite Lattice Subelement (복합재 격자 구조의 강성 평가를 위한 Subelement의 압축, 굽힘 시험)

  • Jeon, Min-Hyeok;Kang, Min-Song;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.331-337
    • /
    • 2017
  • The composite lattice structures have advantages of high specific stiffness and strength and are mainly applied to the structures of launch vehicles that carry the compressive load. However, since these structures are manufactured by filament winding technology, there are some defects and voids found in the knots. For these reasons, the stiffness and strength of the lattice structures have to be compared with finite element model for predicting design load. But, the full scale test is difficult because time and space are limited and the shape of structure is complex, and hence the simple and reliable test methods for examination of stiffness are needed. In this paper, subelements of composite lattice structures were prepared and compressive and bending test were conducted for examination of stiffness of helical and hoop rib. Test methods for subelements of composite lattice structures that has curved and twisted shape were supposed and compared with finite element analysis results.

Study on the Influence of Fungi for Thermal Protective Cork-based Exterior Insulator (열방호용 코르크계 외부 인슈레이션 재료의 곰팡이 영향 연구)

  • Chung, Sang Ki;Park, Hee Moon;Kang, Eun Hye;Kim, Hyung Geun;Kim, Yun Chul;Park, Young Chul;Park, Byeong Yeol;Choi, Dong Hyun;Lee, Seung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.933-935
    • /
    • 2017
  • This paper deals with the influence of fungi for the thermal protective cork-based exterior insulator which protect a missile system from aerodynamic loads and heating during flight of missile. We consider the adhesion of cork-based composite on the composite motor case which fabricated by filament winding process. We also consider the importance of the requirement analysis for effective, successful system development under given system conditions. In order to develop the basic requirement analysis for the thermal protective cork-based exterior insulator, an experimental requirement analysis was accomplished, and some experimental comparing results, the study for preventing fungi are presented.

  • PDF

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (초고압가스 차량용 연료탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2009
  • In this study, the strength safety of a composite fuel tank which is fabricated by an aluminum liner of Al6061-T6 materials and composite layers of carbon/epoxy-glass/epoxy composites has been analyzed by using a finite element analysis technique. In order to enhance the durability of the composite fuel tank, an autofrettage process was used and compressed natural gas was supplied to the prestressed fuel tank. The FEM computed results on the stress safety of autofrettaged gas tanks were compared with a criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results indicated that the stress safety of autofrettaged fuels tanks shows instability at the dome zone and uniform stability at the parallel body, which provide an evaluation data for a strength safety of autofrettaged composite fuel tanks. The computed results show that the stress safety of 9.2 liter composite fuel tanks satisfied the safety criteria of four evaluation items, which are provided by US DOT-CFFC and KS and indicated a safe design.

  • PDF

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

Failure Behavior of Pin-jointed Cylindrical Composites Using Acoustic Emission Technique (AE기법을 이용한 원통형 복합재의 핀 체결부 파괴거동)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Chan-Gyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test with acoustic emission technique. The composites were fabricated by a filament winding process, and three types of laminated patterns were considered. Type 1 was fabricated with stitch, Type 2 was fabricated without stitich and Type 3 was fabricated with prepregs. According to the results, bearing strength of Type 1 was 3.3% lower than that of Type 2 and that of Type 3 was highest. Type 1 and Type 2 revealed a net-tension failure mode, respectively, whereas Type 3 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the Type 3 was higher than that of the Type 1 and Type 2. Therefore, the Type 3 was found to be structurally safer than the Type 1 and Type 2.

A Study on the Burst Pressure of Composite Motor Case due to the Change of Metal Boss PDR Design (금속 보스 압력분포비 설계 변경에 따른 복합재 연소관 파열압력에 관한 연구)

  • Kim, Namjo;Jeong, Seungmin;Yun, Kyeongsoo;Chung, Sangki;Hwang, Taekyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Composite motor cases fabricated by the filament winding method are structurally weak in the dome when they are required to withstand the internal pressure of the combustion gas. In this study, a finite element analysis is conducted to compare the burst pressure of a composite dome according to the variation of the pressure distribution ratio(PDR). The performance of the composite motor case was compared quantitatively by calculating the stress on the inner and outer dome surfaces and metal boss volume. As a result, the critical point of the failure mode was observed at a PDR between 2.5 and 3.0. A design at a PDR of 2.5­-3.5 can reduce the weight of metal boss without fluctuation in the burst pressure of the combustion motor case. Moreover as the design reference value changes according to the dome shape and opening size, further analysis and testing are necessary.

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures (두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향)

  • Kong, Seung-Taek;Jeon, Min-Hyeok;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2021
  • In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

The Effect of Fiber Volume Fraction Non-uniformity through Thickness Direction on the Torsional Buckling Load of Cylindrical Composite Lattice Structure (두께방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향)

  • Min-Hyeok Jeon;Hyun-Jun Cho;Yeon-Ju Kim;Mi-Yeon Lee;In-Gul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.80-85
    • /
    • 2023
  • A cylindrical composite lattice structure is manufactured by filament winding. The distribution of nonuniform fiber volume fraction induced by the manufacturing process can be observed. The stiffness and buckling characteristics can be influenced by non-uniform fiber volume fraction. In this paper, the effect of non-uniform fiber volume fraction through thickness direction on the torsional buckling load of the cylindrical composite lattice structure was examined. The stiffness variation induced by the non-uniform fiber volume fraction was applied to the finite element model, and buckling analysis was performed. The variations of buckling load with variations of fiber volume fraction were compared. The non-uniform fiber volume fraction reduced the torsional buckling load of the composite lattice structure.

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.