• Title/Summary/Keyword: Fighter Jet

Search Result 37, Processing Time 0.026 seconds

Civil Aircraft Digital Fly-By-Wire System Technology Development Trend (민간항공기 디지털 Fly-By-Wire 시스템 기술 개발 동향)

  • Kim, Eung-Tai;Chang, Jae-Won;Choi, Hyoung-Sik;Lee, Sug-Chon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 2009
  • The Fly-By-Wire system was first applied to the fighter and its inherent advantages lead to the advent of the Fly-By-Wire civil aircraft. Recently even the small jet aircraft shows the trend of adopting the Fly-By-Wire system. In the future, most of the aircraft are expected to be the Fly-By-Wire type. In this paper, the structure and the characteristics of the Fly-By-Wire system applied to the civil aircraft was described. The development trend of the redundant method of the flight control system, data communication system, control surface actuation system and the control laws implemented by the Fly-By-Wire system of the civil aircraft are discussed.

  • PDF

Characteristics of Friction Materials for Brake Disc in F-16 B32 Fighter (F-16 B32 전투기용 브레이크 디스크 소재의 물성특성 연구)

  • Kam, Moon-Gap;Kim, Won-Il;Kim, Tae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.98-104
    • /
    • 2007
  • The carbon fiber reinforced carbon composite (CFRC) materials are necessary for the advanced industries that require the thermal resistance. And the development and research for CFRC has been in progress in the field of aerospace and defense industry. CFRC have several advantages and special properties such as excellent anti ablation, outstanding strength retention at very high temperature, high heat capacity and thermal transport, high specific stiffness and strength, and high thermal shock resistance. They have been used as aircraft brake, rocket nozzle, nose cones, jet engine turbine wheels, and high speed craft. Since the technology related to CFRC was prohibited from importing and exporting, we developed our own technology to produce F-16 B32 brake disk made out of CFRC, and then we performed various tests to observe the characteristics of CFRC-based brake disk developed in this study in view of density, strength, friction, specific heat, and heat conductivity.

  • PDF

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration from Flight Test (비행시험을 통한 비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kim Seung-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.713-718
    • /
    • 2006
  • Supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. Especially, asymmetric loading configurations could result in decreased handling qualities for the pilot maneuvering of the aircraft. The design of the T-50 lateral-directional roll axis control laws change from beta-betadot feedback structure to simple roll rate feedback structure and gains such as F-16 in order to improve roll-off phenomena during pitch maneuver in asymmetric loading configuration. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver, but initial roll response is very fast and wing pitching moment is increased. In this paper, we propose the lateral control law blending between beta-betadot and simple roll rate feedback system in order to decreases the roll-off phenomenon in lateral axes during pitch maneuver without degrading of roll performance.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.

A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law (제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Shin, Ji-Hwan;Park, Sang-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

A Study of Russian Patients' Satisfaction on Medical Tourism in Korea with Air Ambulance Service (해외 의료관광객의 Air Ambulance를 이용한 의료관광서비스 만족도에 관한 연구 : 러시아 이용객을 중심으로)

  • Kim, Pyung-Soo;Kim, Kee-Woong;Park, Sung-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.99-109
    • /
    • 2014
  • Airline and medical industry in Korea have rapidly grown since 21st century. However, air ambulance service using an aircraft has not as popular as in Japan, Europe or United States. Central government has decided to start emergency helicopter service since 2011 to transport emergency patients transported in the past by fire fighter helicopter. Unfortunately, 32 OECD countries out of 33 have operated emergency aircraft system except Korea. There are more than 25 emergency helicopters in Japan, which can operate within five minutes. Such system could save a lot of social direct or in-direct cost by saving valuable lives of Japan citizens. This paper has tried to research the perception of overseas Russian medical tourists on using Air ambulance for their medical tourism to Korea. Researching air ambulance, this paper expects to find ways to enhance both medical tourism industry and airline, business jet industry. According to research results, it was proven that tangibility of medical tourism service has a positive effect on the human factor of air ambulance. The human factor has also a significant impact on the passenger comfortableness of air ambulance. Such comfortableness increases the overall satisfaction of medical tourism.

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

Aircraft Digital Fly-By-Wire System Technology Development Trend (항공기 디지털 전자식 비행제어 시스템 기술 개발 동향)

  • Seong-Byeong Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.509-520
    • /
    • 2023
  • In this paper, the structure and the characteristics of the Fly-By-Wire system applied to the civil aircraft was described. The development trend of the redundant method of the flight control system, data communication system, control surface actuation system and the control laws implemented by the Fly-By-Wire system of the civil aircraft are discussed. The Fly-By-Wire system was first applied to the fighter and its inherent advantages lead to the advent of the Fly-By-Wire civil aircraft. Recently even the small jet aircraft shows the trend of adopting the Fly-By-Wire system. In the future, most of the aircraft are expected to be the Fly-By-Wire type.

A Study on Aircraft Flight Stability of T-50 Air Data Reconfiguration Mode (T-50 형상 재구성 모드의 항공기 비행 안정성에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moom;Hwang, Min-Hwan;Bae, Myung-Whan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.57-64
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft using digital flight-by-wire flight control system receive aircraft flight condition such as altitude, airspeed and AoA(angle of attack) from IMFP(Integrated Multi-Function Probe). IMFP sensors data have triplex structure using three IMFP sensors. An air data reconfiguration mode is applied to a T-50 flight control law to guarantee the aircraft flight stability when 2 or 3 IMFP sensors data are invalided. In this study, linear analysis and HQS(Handling Quality Simulator) pilot simulation are performed to analyze flight stability when the air data reconfiguration mode is applied to the control law. And we propose an example that the air data reconfiguration mode is applied to the control law due to second failure of IMFP during T-50 flight. It is found that the aircraft flight stability is not affected when the T-50 flight control law is changed to the air data reconfiguration mode.