• Title/Summary/Keyword: Field-domain

Search Result 1,670, Processing Time 0.196 seconds

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

고속 알고리즘을 이용한 음장 효과 구현 (Sound Field Effect Implementation Using East Algorithm)

  • 손성용;서정일;한민수
    • 대한음성학회지:말소리
    • /
    • 제47호
    • /
    • pp.85-96
    • /
    • 2003
  • It is difficult to implement sound field effect on real time using linear convolution in time domain because linear convolution needs much multiply operations. In this paper three ways is introduced to reduce multiplication operations. Firstly, linear convolution in time domain is replaced with circular convolution in frequency domain. It means that it operates multiplication in place of convolution. Secondly, one frame will be divided into several frames. It will reduce the multiplication operation in processing that transforms time domain into frequency domain. Finally, QFT will be used in place of FFT. Three ways result much reduction in multiplication operations. The reduction of the multiplication operation makes the real time implementation possible.

  • PDF

시간영역 결합적분식을 이용한 도체 과도산란의 무조건 안정된 해석 (Unconditionally Stable Analysis of Transient Scattering from Conductors Using Time-Domain Combined Field Integral Equations)

  • 정백호;서정훈;이원우
    • 대한전자공학회논문지TC
    • /
    • 제40권8호
    • /
    • pp.340-348
    • /
    • 2003
  • 본 논문에서는 시간영역 결합적분식 (combined field integral equation, CFIE)을 이용하여 도체로부터 산란되는 전자파 과도응답을 무조건적으로 안정되게 해석할 수 있는 새로운 해법을 제안한다. 이 방법은 기존의 MOT (marching-on in time) 기법을 이용하지 않고, 모멘트법으로 공간 및 시간을 분리하여 시험 내적을 적용한다. 삼차원 임의 형태의 도체 구조를 해석하기 위하여 공간영역의 전개 및 시험함수로서 삼각형 벡터 함수를 사용한다. 시간 영역의 전개함수는 지수 감쇄함수를 라게르 함수에 곱하여 정의되며, 이 함수는 시간영역의 시험함수로도 사용된다. 제안된 방법에 의하여 계산되는 도체로부터의 과도응답은 진동없이 안정되었으며, 주파수 영역의 CFIE로부터 계산된 결과와 잘 일치하였다.

패션디자이너의 창의성 분석 모형 개발 - 칙센트미하이와 가드너의 관점을 중심으로 - (Analytic Model Development for Fashion Designer's Creativity - Centered on Perspectives of M. Csikszentimihalyi & H. Gardener -)

  • 이민선;김민자
    • 복식
    • /
    • 제65권4호
    • /
    • pp.137-153
    • /
    • 2015
  • This paper aims at developing an analytic model for examining fashion designer's creativity. This research developed the analytic model of fashion designer's creativity adding the specificity of the fashion area to The Systems Model of Creativity by Csikszentmihalyi & Gardener. The analytic model of fashion designer's creativity is composed of 3 elements: the fashion designer, the fashion domain and the fashion field. The detail factors to be examined by each of the elements are as follows. In the dimension of an individual fashion designer, detail factors influencing the manifestation of creativity contain cognitive and non-cognitive abilities (i.e: personality traits, erotic capital) and socio-psychological factors (i.e: family condition, sexual identity, marital status, health). In the dimension of the fashion domain, creativity factors are composed of socio-cultural contexts and paradigms. In the dimension of the fashion field, detail factors refer to a mentor, supporter, competitor and a follower. Fashion designer's creativity manifests itself when detail factors of an individual fashion designer, fashion domain and field interact with each other dynamically.

Influence of Illumination on Domain Switching and Photovoltaic Current in Poled $(Pb_{1x}La_x)TiO_3$ Freeoelectric Ceramics

  • Park, Si-Kyung;Park, Dong-Gu;Kim, Sung-Ryul
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.267-271
    • /
    • 2000
  • The influence of photoexcited nonequilibrium carriers on domain switching and photovoltaic current was investigated in two kinds of poled La-modified PbTiO$_3$ferroelectric ceramics, (Pb$_{0.85}$La$_{0.15}$)TiO$_3$and (Pb$_{0.76}$La$_{0.24}$)TiO$_3$, under illumination in the absence of external electric field. Both photovoltaic current and cumulative AE event counts increased with illumination time. The observed nonsteady-state photovoltaic current could be explained on the basis of the cycles of a series of physical events consisting the establishment of space charge field by photoexcited carriers trapped at the grain boundaries, the photoinduced domain switching, and the increase in the remanent polarization. An analysis of energy distribution of the observed AE signals also revealed that the space charge field in (Pb$_{0.85}$La$_{0.15}$)TiO$_3$allowed both 18$0^{\circ}C$ and 90$^{\circ}$domains to be switched during illumination.

  • PDF

유한요소법에 의한 초전도교류 발전기의 과도 특성 해석 (Finite Element Analysis of the Transient Characteristics of a Superconducting A.C. Generator)

  • 한성진;배동진
    • 대한전기학회논문지
    • /
    • 제40권1호
    • /
    • pp.24-30
    • /
    • 1991
  • This paper deals with the analysis of the transient characteristics of a superconducting a.c. generator(SCG) using Finite Element Method. Since the magnetic field induced by the field current and the armature currents are not sinusoidally distributed in a generator, the conventional equivalent circuit method, in general, uses the fundamental component only and is done in frequency domain. But the finite element analysis makes it possible to analyze the transient magnetic field distribution and the electrical characteristics of the double shields of SCG in time domain.

  • PDF

음장의 복소 포락과 응용 (Complex envelope of sound field and its application)

  • 박춘수;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.502-505
    • /
    • 2006
  • Acoustic holography allows us to predict spatial pressure distribution on any surface of interest from measured hologram. It is noteworthy that the data size is so huge that it takes long time to calculate pressure field. Moreover the reconstructed pressure field is frequently too complicated to get what we want to know. One possible candidate is complex envelope. Complex envelope in time domain is well known and widely used in various engineering field. We have attempted to extend this method to space domain, so that we can have rather simple spatial pressure picture that provides information we need, for example, where sound sources are. First we start with the simplest case. We examine the complex envelope of a plane wave on both space and wave number domain. Then we extend to monopole case. Holographic reconstructed sound field on the monopole is processed according to what we propose. We demonstrate how this method provides better picture for analyzing the sound field.

  • PDF

이종재료로 구성된 영역의 응력장 해석 개선방안 연구 (A study on the improvement method of the stress field analysis in a domain composed of dissimilar materials)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1844-1851
    • /
    • 1997
  • Displacement fields and interface stresses are obtained by modifying the potential energy functional with a penalty function which enforces the continuity of stresses at the interface of two-materials. Based on the displacement field and the interface stresses, a new methodology to generate a continuous stress field over the entire domain including the interface of the dissimilar materials has been proposed by combining the L$^{2}$ projection method of stress-smoothing and the Loubignac's iterative method of improving the displacement field. Stress analysis was carried out on two examples which are made of highly dissimilar materials. As a result of the analysis, it is found that the proposed method provides improved continuity of the stress field over the entire domain as well as predicting accurate nodal stresses at the interface. In contrast, the conventional displacement-based finite element method provides significant stress discontinuties at the interfaces. In addition, it was found that the total strain energy evaluated from the improved continuous stress field converge to the exact value as increasing the number of iterations in the proposed method.

고전장하에서 제조된 PVA/Gelatin 블렌드막의 구조와 팽윤거동 (Morphology and Swelling Behaviors of PVA/Gelatin Blend Membranes Prepared Under High Electric Field)

  • 허양일;윤형구
    • 폴리머
    • /
    • 제30권6호
    • /
    • pp.563-567
    • /
    • 2006
  • 생체 적합성이 우수한 gelatin(GEL)과 기계적 물성이 뛰어난 poly(vinyl alcohol)(PVA)로 이루어진 블렌드막을 $3{\sim}10kV$의 고전장하에서 용액 캐스팅 법에 의해 제조하였고, 막중에 형성되는 미세한 domain 구조의 배향에 미치는 전장의 효과를 조사하였다. 5 kV이상의 높은 전장하에서 제조된 막의 경우 SEM 사진으로부터 막중의 GEL domain이 전장인가 방향으로 배향되어 있음을 관찰하였다. 이는 제막 중 상분리된 두 상의 계면장력 감소에 기인한 Maxwell의 정전 분산 효과에 의한 것으로 해석될 수 있다. 또한, 고전장 인가시 전극 판에서 발생하는 열과 GEL domain의 연신 배향 효과에 의해 PVA/GEL 블렌드막의 결정화도가 증가하는 것을 WAXD와 팽윤거동 관찰을 통해 확인 할 수 있었다.

반사 음장을 고려한 음향 확산 구조의 위상 최적 설계 (Topology Optimization of an Acoustic Diffuser Considering Reflected Sound Field)

  • 양지은;이중석;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.973-981
    • /
    • 2013
  • The main role of an acoustic diffuser is to diffuse reflected sound field spatially. Since the pioneering work of Schroeder, there have been investigations to improve its performance by using shape/sizing optimization methods. In this paper, a gradient-based topology optimization algorithm is newly presented to find the optimal distribution of reflecting materials for maximizing diffuser performance. Time-harmonic acoustic analysis in a two-dimensional acoustic domain is carried out where the domain is discretized by finite elements. Perfectly matched layers are placed to surround the domain to simulate non-reflecting boundary conditions. Design variables are assigned to each element of which material properties are interpolated between those of air and those of a rigid body. An approach to extract the reflected field from the total acoustic field is employed. To validate the effectiveness of the proposed method, design problems are solved at different frequencies. The performance of the optimized diffusers obtained by the proposed method is compared against that of the conventional Schroeder diffusers.