Browse > Article

Morphology and Swelling Behaviors of PVA/Gelatin Blend Membranes Prepared Under High Electric Field  

Huh, Yang-Il (School of Applied Chemical Engineering, Chonnam National University)
Yun, Hyung-Ku (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Polymer(Korea) / v.30, no.6, 2006 , pp. 563-567 More about this Journal
Abstract
Poly(vinyl alcohol) (PVA) and gelatin (GEL) blend membranes were prepared by solution casting method under a high electric field. SEM observation of the membrane showed that gelatin rich domains were elongated and oriented to the direction of the applied electric field in PVA matrix. This can be attributed to the electrostatic emulsifying effects due to a reduction in interfacial tension. In addition, it was observed through WAXD and swelling measurements that the degree of crystallinity of membranes increased with applied electric field strength. This may be interpreted to be caused by the orientation effect of GEL domains in the blend membrane, and the self-annealing effect due to some heat generated from high electric field during casting.
Keywords
poly(vinyl alcohol); gelatin; blend membrane; high electric field; electrostatic emulsifying effect;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. Pefferkorn, A. Schmitt, and R. Varogui, Biopolymers, 21, 1451 (1982)   DOI
2 T. Hori, H. Nawa, Y. Igarashi, and Y. Nakamura, Kobunshi Rombunshu, 47, 371 (1990)   DOI
3 D. Marsh, Biochem. J., 345, 315 (1996)   DOI   ScienceOn
4 G. Venugopal, S. Krause, and G. E. Wnek, J. Polym. Sci.: Part C : Polym. Lett., 27, 497 (1989)   DOI   ScienceOn
5 R. Kesting, Synthetic Polymer Membranes, McGraw-Hill, NY, p 114 (1997)
6 G. Venugopal, S. Krause, and G. E. Wnek, Polym. Prepr., 31, 377 (1990)
7 E. Gross and J. Meihenhofer, The Peptides, Acad. Pre., NY, vol. 4 (1981)
8 P. J. Lauger. J. Membrane Biol., 57,163 (1980)   DOI
9 H. F. Mark, Encyclopedia of Polymer Sci. & Tech., John Wiley & Sons. Inc., NY, vol .7, p. 446 (1967)
10 W. R. Penrose, R. Zang, and D. K. Oxender, J. Biol. Chem., 245, 1432 (1970)
11 G. Venugopal, S. Krause, and G. E. Wnek, Mecromol., 24, 6879 (1991)   DOI
12 K. Maruyama, H. Tsukube, and T. Araki, J. Am. Chem. Soc., 102, 3246 (1980)   DOI
13 A. M. Liguori, J. Membrane Sci., 3, 357 (1978)   DOI   ScienceOn
14 J. P. Behr and J. M. Lehn, J. Am. Chem. Soc., 95, 6108 (1973)   DOI
15 K. Inagaki, Sen-i Gakksishi, 39, 405 (1983)   DOI
16 H. K. Lonsdale, J. Membrane Sci., 10, 81 (1982)   DOI   ScienceOn
17 T. Miyata, Membrane, 10, 268 (1985)   DOI
18 J. H. B. Bridge and J. B. Bassingthwaight, Science, 219, 178 (1983)   DOI
19 S.J. Singer and G. L. Nicolson, Science, 175, 720 (1972)   DOI
20 K. Scott, R. Hughes, Industrial Membrane Separation Technology, Chapman & Hall, UK, p. 87 (1996)
21 S. Higuchi, T. Mozawa, M. Maeda, and S. Inoue, Macromolecules, 19, 2263 (1986)   DOI
22 N. Nakabayashi, Membrane, 2, 353 (1977)   DOI