• Title/Summary/Keyword: Field simulation

Search Result 5,641, Processing Time 0.028 seconds

Flow Tests of Sandy-Clay Column due to Increasing Water Content and Their Simulation Using Particle Method (함수비 증가에 따른 모래질 점토기둥의 붕괴실험 및 입자법 시뮬레이션)

  • Park, Sung-Sik;Chang, Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.25-37
    • /
    • 2014
  • Clay or sand does not exist alone but various sizes of soil are mixed in the field. In this study, the effect of water content on large deformation of such mixed soils is studied by using soil column tests and a particle method. A soil column with 7 cm in diameter and 13 cm in height, which was made out of kaolinite with sand content of 0, 10, 25, or 50%, was tested for large deformation. Its deformation was monitored with time. While increasing its water content from 40, 60, to 80%, a total of 12 types of soil column tests were carried out. The particle method simulated their deformation with time. A maximum plastic shear modulus, which was a function of undrained shear strength and plasticity index for soils with different water contents, was associated with soil viscosity to simulate large deformation of soil column. When a sand content of soil column was constant, the deformation of soil column increased with increasing water content. When a water content of soil column was constant, large deformation occurred with increasing the sand content. The maximum deformation, which was 22 cm in diameter, was observed in the case of water content of 80% and sand content of 50%. The particle method was able to relatively well simulate such large deformation and stress change of soils.

Conventional Fluid Dynamics and CFD Modeling for the Systematic Analysis of the Inside Flow of the Fischer-Tropsch Packed Bed Reactor (전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링)

  • Kim, Hyunseung;Cho, Jaehoon;Hong, Gi Hoon;Moon, Dong Ju;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.65-77
    • /
    • 2016
  • Modeling for complex reacting flow in Fischer-Tropsch reactor is one of the challenges in the field of Computational Fluid Dynamics (CFD). It is hard to derive each and every reaction rate for all chemical species because Fisher-Tropsch reaction produces many kinds of hydrocarbons which include lots of isomers. To overcome this problem, after analyzing the existing methodologies for reaction rate modeling, non-Anderson-Schulz-Flory methodology is selected to model the detailed reaction rates. In addition, the inside flow has feature of multi-phase flow, and the methodologies for modeling multi-phase flow depend on the interference between the phases, distribution of the dispersed phase, flow pattern, etc. However, existing studies have used a variety of inside flow modeling methodologies with no basis or rationale for the feasibility. Modeling inside flow based on the experimental observation of the flow would be the best way, however, with limited resources we infer the probable regime of inside flow based on conventional fluid dynamics theory; select the appropriate methodology of Mixture model; and perform systematic CFD modeling. The model presented in this study is validated through comparisons between experimental data and simulation results for 10 experimental conditions.

Implementation of Multiple-Valued Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 다치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.115-122
    • /
    • 2004
  • In this paper, the multiple-valued adders and multipliers are implemented by current-mode CMOS. First, we implement the 3-valued T-gate and the 4-valued T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second we implement the circuits to be realized 2-variable 3-valued addition table and multiplication table over finite fields $GF(3^2)$, and 2-variable 4-valued addition table and multiplication table over finite fields $GF(4^2)$ with the multiple-valued T-gates. Finally, these operation circuits are simulated under $1.5\mutextrm{m}$ CMOS standard technology, $15\mutextrm{A}$ unit current, and 3.3V VDD voltage Spice. The simulation results have shown the satisfying current characteristics. The 3-valued adder and multiplier, and the 4-valued adder and multiplier implemented by current-mode CMOS is simple and regular for wire routing and possesses the property of modularity with cell array. Also, since it is expansible for the addition and multiplication of two polynomials in the finite field with very large m, it is suitable for VLSI implementation.

Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration (트럭 공차중량, 중앙분리대 피복두께 및 열화수준에 따른 중앙분리대 충돌해석모델의 민감도 분석)

  • Lee, Jaeha;Lee, Ilkeun;Jeong, Yoseok;Kim, Kyeongjin;Kim, WooSeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.297-306
    • /
    • 2017
  • The concrete median barrier used currently in South Korea was developed the impact level of SB5-B(270kJ). However, the impact level of SB6(420kJ) should be considered in many placed with the increased accident of heavy vehicles. In order to increase the impact resistance of newly developed concrete median barrier, the computer simulation was conducted before real field test. For the accurate behavior of concrete, the parameter, such as impact vehicle, concrete cover depth and deterioration, was important. In this paper, a parametric study was conducted depending on vehicle curb weight, concrete cover depth and level of deterioration. The impact resistance of concrete median barrier was severely changed depending on vehicle curb weight and concrete cover depth. Furthermore, the impact resistance of concrete median barrier was also decreased due to deterioration of concrete, therefore the repair and rehabilitation should be conducted for damaged concrete depending on deterioration level. Therefore, vehicle curb weight, cover depth of concrete structures and deterioration level of concrete should be carefully considered for conducting analysis of concrete structure to vehicle collision.

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Evaluation of the Radiochromic Film Dosimetry for a Small Curved Interface (휘어진 경계에서의 좁은 영역에 대한 Radiochromic 필름 도시메트리 평가)

  • Kang, Sei-Kwon;Park, Soah;Hwang, Taejin;Cheong, Kwang-Ho;Han, Taejin;Kim, Haeyoung;Lee, Me-Yeon;Kim, Kyoung Ju;Bae, Hoonsik
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • A tumor on the eyelid is often treated using a high-energy electron beam, with a metallic eye shield inserted between the eyelid and the eyeball to preserve the patient's sight. Pretreatment quality assurance of the inner eyelid dose on the metallic shield requires a very small dosimetry tool. For enhanced accuracy, a flexible device fitting the curved interface between the eyelid and the shield is also required. The radiochromic film is the best candidate for this device. To measure the doses along the curved interface and small area, a 3-mm-wide strip of EBT2 film was inserted between the phantom eyelid and the shield. After irradiation with 6 MeV electron beams, the film was evaluated for the dose profile. An acrylic eye shield of the same size as the real eye shield was machined, and CT images free from metal artifacts were obtained. Monte Carlo simulation was performed on the CT images, taking into account eye shield material, such as tungsten, aluminum, and steel. The film-based interface dose distribution agreed with the MC calculation within 2.1%. In the small (millimeter scale) and curved region, radiochromic film dosimetry promises a satisfactory result with easy handling.

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

Design of a TL Personal Dosimeter Identifiable PA Exposure and Development of Its Dose Evaluation Algorithm (후방피폭선량계측이 가능한 TL 개인선량계의 설계 및 선량평가 알고리즘 개발)

  • Kwon, J.W.;Kim, H.K.;Yang, J.S.;Kim, J.L.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • A single-dosimeter worn on the anterior surface of body of a worker was found to provide significant underestimation of dose to the worker when radiation comes from behind of the human body. Recently, several researchers suggested that this kind of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. But this multiple dosimetry also has the disadvantages like overestimation lowering work efficiency or cost burden. In this study, a single dosimeter introducing asymmetric filters enabled to identify PA exposure was designed by monte-carlo simulation and experiments and its dose evaluation algorithm for AP-PA mixed radiation field was established. This algorithm was applicable to penetrating radiation which had the effective energy more than 100 keV. Besides, the dosimeter and algorithm in this study were possible to be applied to near PA exposure.

A Study on the Public Evacuation Time Estimates for Radiological Emergency Plan and Preparedness of Wolsong Nuclear Power Plant Site (방사선 비상계획을 위한 월성원전 주변 주민 소개시간 예측 연구)

  • Lee, Gab-Bock;Bang, Sun-Young;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.79-88
    • /
    • 2007
  • When an accident occurs at nuclear power plant and radionuclide material is released to the area around the plant, public evacuation is considered as a measure to protect the safety of the residents nearby. This study draws factors required to estimate evacuation time and make estimation of the time to evacuate all residents from the EPZ of Wolsong site in consideration of traffic condition in the neighborhood and on the basis of field data around the site for each factor. The traffic capacity and the traffic volume by season were investigated for the traffic analysis and simulation within EPZ of Wolsong site. As a result, the background traffic volume by season were established. To estimate TGT(Trip Generation Time), the questionnaire surveys were carried out for resident and transient. The TSIS code was applied to traffic analysis in the events of daytime/night and normal/adverse weather under normal day/summer peak traffic condition. The results showed that the evacuation time required for total vehicles to move out from EPZ took generally from 118 to 150 minutes. The evacuation time took longer maximum 17 minutes at night than daytime during summer peak traffic.

Effects of Injection Configuration on Mixing in Supersonic Combustor

  • Sakamoto, Hayato;Matsuo, Akiko;Mitani, Tohru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.48-54
    • /
    • 2004
  • The effects of injector spacing s and injector diameter d on mixing are numerically investigated in supersonic combustor with perpendicular injection behind a backward-facing step. Simulations are reported for airstream Mach number of 2.4. Parameters are changed on following 4 cases to investigate the effects of injector configuration on mixing efficiency $\eta_m$. In the case of varying d or s, dynamic pressure ratio $Rq(=(pu^2)_j/(pu^2)_a)$ is also varied to keep bulk equivalence ratio $\Phi({\oe})Rq.d^2/s)$ constant. (l) Injector spacing s is varied at constant $\Phi$=0.5, 1, 2 for injector diameter d=6mm. In the case of $\Phi$=1, $\eta_m$ has its maximum value at s=24mm. The reason is that increase of $\eta_m$. , by widening spacing at Rq=constant competes with decrease of $\eta_m$ by increasing Rq at s=constant. When spacing is narrow, the flow field of vicinity of injector becomes two-dimensional because adjacent jets interferes each other. By widening spacing, air is easily entrained by three-dimensional effect. This mechanism also appears in the case of $\Phi$=0.5, 2 for d=6mm, and $\eta_m$. reaches its maximum value at s=24mm for $\Phi$=0.5 and at s=42mm for $\Phi$=2. (2) In the case of injector diameter d varied at $\Phi$=1 for s=30mm, $\eta_m$. has its maximum value at d=3mm. The reason is that decrease of $\eta_m$ by increasing injector diameter competes with increase of $\eta_m$ by decreasing Rq at d=constant.(3) In the case of s varied at $\Phi$=0.5, 1,2 for d=3mm, the injector spacing at which mixing efficiency has its maximum value is s= 18mm for $\Phi$=0.5, s=24mm for $\Phi$=1, s=24mm for $\Phi$=2. Therefore it is found that d=3mm and s=24mm can be optimum configuration over a range of $\Phi$=0.5~2.(4) The effect of h on the optimum spacing is investigated. s is varied for d=6mm at step height h=4, 6, 8mm. The simulation results do not show significant change on the step height.

  • PDF