• Title/Summary/Keyword: Field simulation

Search Result 5,681, Processing Time 0.034 seconds

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Park, Hyun-Tae;Bang, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1703-1708
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$ Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $180^{\circ}$). The grobal mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhaced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

  • PDF

Practical Application of Virtual Acoustic Field Simulation System(VAFSS) (능동형 음장조성시스템의 적용 사례)

  • Park, Sa-Keun;Jang, Gil-Soo;Kook, Chan;Song, Min-Jeong;Jeon, Ji-Hyeon;Shin, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.738-741
    • /
    • 2006
  • Virtual Acoustic Field Simulation System (VFASS) has been developed through soundscape technique research for making comfortable acoustic environment in urban public places. This system could suggest Introducing sounds which are suitable for certain area, Also this system gives certain area vitalities and amenity through with the correspondence to time, temperature, humidity, wind velocity and sunshine of the area. In this paper, Application possibility of VFASS is examined how can be adapted to D University square as a case study.

  • PDF

Developing Coarse-Grained Force Fields for Polystyrene with Different Chain Lengths from Atomistic Simulation

  • Rao, Shuling;Li, Xuejin;Liang, Haojun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.610-616
    • /
    • 2007
  • We developed a coarse-grained force field and have extended it to polystyrene with longer chain length. A systematic method was introduced and was utilized to explain how the coarse-grained force field for polystyrene could be developed from the atomistic simulation in the paper. We elected to use polystyrene with different chain lengths of 20, 40 and 80 monomers in this study. In three cases, we utilized the same new mapping scheme. The coarse-grained force field does reproduce the bond, angle, and radial distribution of the atomistic model. The coarse-grained model proved successful, as shown by analyses of the static and dynamic properties of different chain lengths.

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • 김성찬;유홍선;박현태;방기영
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$. Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $^120{\circ}$, and $180^{\circ}$). The global mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhanced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

Improvement for Simulation of Device equipped with Heated Field Plate Using Analytic Model (분석적 모델을 이용한 Floated Field Plate구조가 있는 소자의 시뮬레이션 개선)

  • Byun, Dae-Seok;Kim, Han-Soo;Choi, Yearn-Ik;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1283-1285
    • /
    • 1993
  • A new simulation method for a device including the Floated Field Plate(FFP) is proposed. The external resistance is connected with FFP in order to simulate FFP as a electrode. The numerical I-V characteristic obtained from MEDICI simulation shows fairly good results such as low leakage current and abrupt breakdown voltage curve. The convergence is improved conveniently compared with conventional method which utilize heavily-doped poly silicon as a electrode.

  • PDF

Field Weakening Control of IPMSM Based Next Generation High Speed Railway System (IPMSM이 적용된 차세대 고속전철 시스템의 약계자 제어)

  • Jin, Kang-Hwan;Yi, Du-Hee;Kim, Sung-Je;Chang, Chin-Young;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.351-357
    • /
    • 2010
  • In this paper, a vector control of the IPMSM drives for the next generation domestic high speed railway system is presented. The applied control method uses one pulse mode field weakening control in constant power region, and maximum torque control per ampere control in constant torque region considering current and voltage limits. An overmodulation control interval is inserted to improve the transient characteristics during transition period of the control modes. Simulation programs based on Matlab/Simulink are developed. Finally the designed system is verified by simulation and their characteristics are analyzed by the simulation results.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

Programming Characteristics on Three-Dimensional NAND Flash Structure Using Edge Fringing Field Effect

  • Yang, Hyung Jun;Song, Yun-Heub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • The three-dimensional (3-D) NAND flash structure with fully charge storage using edge fringing field effect is presented, and its programming characteristic is evaluated. We successfully confirmed that this structure using fringing field effect provides good program characteristics showing sufficient threshold voltage ($V_T$) margin by technology computer-aided design (TCAD) simulation. From the simulation results, we expect that program speed characteristics of proposed structure have competitive compared to other 3D NAND flash structure. Moreover, it is estimated that this structural feature using edge fringing field effect gives better design scalability compared to the conventional 3D NAND flash structures by scaling of the hole size for the vertical channel. As a result, the proposed structure is one of the candidates of Terabit 3D vertical NAND flash cell with lower bit cost and design scalability.

Simulation of electromagnetic Phenomena in Vacuum interrupter with axial magnetic field type by Arc (아크 발생에 의한 축자계형 진공인터럽터의 전자계 현상 시뮬레이션)

  • Seo, Sang-Hyun;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, we performed analysis of electric field, magnetic field, current density in AMF electrode using the Maxwell 3D simulation. The current distribution and magnetic field in simple models are analyzed to verify its efficiency and accuracy. In the vicinity of the slits of axial magnetic field type electrode a comparatively high axial magnetic flux density existsIn addition the validity of FEM is confirmed by performing the analyses of distribution in current density and magnetic flux density.

  • PDF

Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors

  • Samuel, T.S.Arun;Balamurugan, N.B.;Sibitha, S.;Saranya, R.;Vanisri, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1481-1486
    • /
    • 2013
  • In this paper, a new two dimensional (2D) analytical model of a Dual Material Gate tunnel field effect transistor (DMG TFET) is presented. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expressions for surface potential and electric field are derived. The electric field distribution can be used to calculate the tunneling generation rate and numerically extract tunneling current. The results show a significant improvement of on-current and reduction in short channel effects. Effectiveness of the proposed method has been confirmed by comparing the analytical results with the TCAD simulation results.