Browse > Article

Developing Coarse-Grained Force Fields for Polystyrene with Different Chain Lengths from Atomistic Simulation  

Rao, Shuling (Hefei National Laboratory for Physical Sciences at Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China)
Li, Xuejin (Hefei National Laboratory for Physical Sciences at Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China)
Liang, Haojun (Hefei National Laboratory for Physical Sciences at Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China)
Publication Information
Macromolecular Research / v.15, no.7, 2007 , pp. 610-616 More about this Journal
Abstract
We developed a coarse-grained force field and have extended it to polystyrene with longer chain length. A systematic method was introduced and was utilized to explain how the coarse-grained force field for polystyrene could be developed from the atomistic simulation in the paper. We elected to use polystyrene with different chain lengths of 20, 40 and 80 monomers in this study. In three cases, we utilized the same new mapping scheme. The coarse-grained force field does reproduce the bond, angle, and radial distribution of the atomistic model. The coarse-grained model proved successful, as shown by analyses of the static and dynamic properties of different chain lengths.
Keywords
coarse-grained; atomistic simulation; polystyrene;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. Espanol, M. Serrano, and I. Zuniga, J. Mod. Phys. C, 8, 899 (1997)
2 M. Murat and K. Kremer, J. Chem. Phys., 108, 4340 (1998)
3 A. R. Leach, Molecular Modelling: Principles and Applications, 2nd edition, Prentice Hall, New Jersey, 2001
4 M. E. Hodsdon, J. W. Ponder, and D. P. Cistola, J. Mol. Biol., 264, 585 (1996)
5 N. L. Allinger, J. Am. Chem. Soc., 99, 8127 (1977)
6 M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987
7 T. C. Clancy, Polymer, 45, 7001 (2004)   DOI   ScienceOn
8 P. Ren and J. W. Ponder, J. Phys. Chem. B, 107, 5933 (2003)   DOI   ScienceOn
9 G. Milano and F. Muller-Plathe, J. Phys. Chem. B, 109, 18609 (2005)   DOI   ScienceOn
10 A. Schlijper, P. Hoogerbrugge, and C. Manke, J. Rheol., 39, 567 (1995)   DOI   ScienceOn
11 J. W. Ponde and F. M. Richards, J. Comput. Chem., 8, 1016 (1987)
12 J. Baschnagel, K. Binder, W. Paul, M. Laso, U. W. Suter, I. Batoulis, W. Jilge, and T. Burger, J. Chem. Phys., 95, 6014 (1991)
13 D. Reith, H. Meyer, and F. Muller-Plathe, Macromolecules, 34, 2335 (2001)
14 X. Li, D. Kou, S. Rao, and H. Liang, J. Chem. Phys., 124, 204909 (2006)   DOI   ScienceOn
15 J. T. Sprague, J. C. Tai, Y. Yuh, and N. L. Allinger, J. Comput. Chem., 8, 581 (1987)
16 H. P. Deutsch and K. Binder, J. Chem. Phys., 94, 2294 (1991)
17 W. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Phys. II (France), 1, 37 (1991)
18 W. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Chem. Phys., 95, 7726 (1991).
19 J. Baschnagel, W. Paul, V. Tries, and K. Binder, Macromolecules, 31, 3856 (1998)
20 A. A. Louis, T. Philos. Roy. Soc. A, 359, 939 (2001)
21 N. L. Allinger, R. A. Kok, and M. R. Imam, J. Comput. Chem., 9, 591 (1988)
22 R. F. Rapold and W. L. Mattice, J. Chem. Soc., Faraday Trans., 91, 2435 (1995)   DOI   ScienceOn
23 M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, Oxford, 1986
24 M. P. Allen, Mol. Phys., 40, 1073 (1980)
25 T. I. Morrow and E. J. Maginn, J. Phys. Chem. B, 106, 12807 (2002)   DOI   ScienceOn
26 K. R. Haire, T. J. Carver, and A. H. Windle, Comput. Theor. Polym. Sci., 11, 17 (2001)   DOI   ScienceOn
27 T. Haliloglu and W. L. Mattice, J. Chem. Phys., 108, 6989 (1998)
28 X. Li, L. Huang, X. Ma, and H. Liang, Polymer, 46, 6507 (2005)   DOI   ScienceOn
29 J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, W. L. Mattice, F. Muller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries, Adv. Polym. Sci., 152, 41 (2000)   DOI
30 P. Hoogerbrugge and J. Koelman, Europhys. Lett., 19, 155 (1992)
31 C. E. Kundrot, J. W. Ponder, and F. M. Richards, J. Comput. Chem., 12, 402 (1991)
32 W. Tschop, K. Kremer, J. Batoulis, T. Burger, and O. Hahn, Acta Polym., 49, 75 (1998)   DOI   ScienceOn
33 B. Forrest and U. Suter, J. Chem. Phys., 102, 7256 (1995)
34 H. P. Wittmann, K. Kremer, and K. Binder, J. Chem. Phys., 96, 6291 (1992)
35 P. G. Bolhuis, A. A. Louis, J. P. Hansen, and E. J. Meijer, J. Chem. Phys., 114, 4296 (2001)   DOI   ScienceOn
36 D. Reith, M. Putz, and F. Muller-Plathe, J. Comput. Chem., 24, 1624 (2003)   DOI   ScienceOn
37 R. V. Pappu, R. K. Hart, and J. W. Ponder, J. Phys. Chem. B, 102, 9725 (1998)
38 R. Groot and P. Warren, J. Chem. Phys., 107, 4423 (1997)
39 O. Hahn, L. Delle Site, and K. Kremer, Macrom. Th. Sim, 10, 288 (2001)   DOI   ScienceOn
40 R. L. C. Akkermans and W. J. Briels, J. Chem. Phys., 114, 1020 (2001)   DOI   ScienceOn
41 P. Ren and J. W. Ponder, J. Comput. Chem., 23, 1497 (2002)   DOI   ScienceOn
42 W. Paul, K. Binder, K. Kremer, and D. W. Heermann, Macromolecules, 24, 6332 (1991)
43 I. Carmesin and K. Kremer, Macromolecules, 21, 2819 (1988)
44 X. Guerrault, B. Rousseau, and J. Farago, J. Chem. Phys., 121, 6538 (2004)   DOI   ScienceOn
45 J. Cho and W. L. Mattice, Macromolecules, 30, 637 (1997)
46 D. Reith, H. Meyer, and F. Muller-Plathe, Comp. Phys. Comm., 148, 299 (2002)
47 F. Guarnieri and W. C. Still, J. Comput. Chem., 15, 1302 (1994)   DOI   ScienceOn
48 P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, 1979
49 W. Tschop, K. Kremer, J. Batoulis, T. Burger, and O. Hahn, Acta Polym., 49, 61 (1998)   DOI   ScienceOn