• Title/Summary/Keyword: Field point measurement data

Search Result 141, Processing Time 0.023 seconds

Density Measurement for Continuous Flow Segment Using Two Point Detectors (두 개의 지점 검지기를 이용한 연속류 구간의 밀도측정 방안)

  • Kim, Min-Sung;Eom, Ki-Jong;Lee, Chung-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • Density is the most important congestion indicator among the three fundamental flow variables, flow, speed and density. Measuring density in the field has two different ways, direct and indirect. Taking photos with wide views is one of direct ways, which is not widely used because of its cost and lacking of proper positions. Another direct density measuring method using two spot detectors has been introduced with the concept of instantaneous density, average density and measurement interval. The relationship between accuracy and measurement interval has been investigated using the simulation data produced by Paramics API function. Finally, density measurement algorithm has been suggested including exponential smoothing for device development.

  • PDF

Implementation & Application of Instrumentation System on Performance Evaluation for Korea-Radio Train Control System (통신기반 열차제어시스템 성능평가용 계측시스템 구현 및 적용)

  • Lee, Jae-Ho;Lee, Kang-Mi;Park, Pyoung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1777-1783
    • /
    • 2013
  • This study aims to implement an instrumentation system measuring and analysing real-time data of information flow between respective subunits composing train control system as the performance evaluation method for wireless communication based urban railway train control system under development for a Korean model. It analyses system functional requirements regarding subsystems composing wireless communication based train control system and test items for functions presented in each specification and examines data and measurement point for measuring according to test items in order to implement an instrumentation system. And, it clearly defines requirements of an instrumentation system to avoid malfunction or error in operation of train control system. It reviews data processing method and display method for effective analysis of data flow between respective subunits with measured data, designs and makes an instrumentation system. Ultimately, it applies to a performance test of train control system and makes sure an instrumentation system in normal working order.

Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

  • Park, Sun-Youp;Choi, Jin;Roh, Dong-Goo;Park, Maru;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Cho, Sungki;Choi, Eun-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

Automatic Extraction of Individual Tree Height in Mountainous Forest Using Airborne Lidar Data (항공 Lidar 데이터를 이용한 산림지역의 개체목 자동 인식 및 수고 추출)

  • Woo, Choong-Shik;Yoon, Jong-Suk;Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.251-258
    • /
    • 2007
  • Airborne Lidar (light detection and ranging) can be an effective alternative in forest inventory to overcome the limitations of conventional field survey and aerial photo interpretation. In this study, we attempt to develop methodologies to identify individual trees and to estimate tree height from airborne Lidar data. Initially, digital elevation model (DEM) data representing the exact ground surface were generated by removing non-ground returns from the multiple-return laser point clouds, obtained over the coniferous forest site of rugged terrain. Based on the canopy height model (CHM) data representing non-ground layer, individual tree heights are extracted through pseudo-grid method and moving window filtering algorithm. Comparing with field survey data and aerial photo interpretation on sample plots, the number of trees extracted from Lidar data show over 90% accuracy and tree heights were underestimated within 1.1m in average at two plantation stands of pine (Pinus koraiensis) and larch (Larix leptolepis).

A Field Study to Evaluate Greenroof Runoff Reduction and Delay (옥상녹화의 우수유출량 저감효과에 관한 연구 -토심 및 식생유무를 중심으로-)

  • Lee, Dong-Kun;Oh, Seung-Hwan;Yoon, So-Won;Jang, Seong-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.117-122
    • /
    • 2006
  • The objective of this study is to analyze the greenroof runoff quantity and delay. The experimental districts, have different soil thickness and vegetation, had installed. A measurement was conducted in Seoul University to investigate the runoff quantity and delay of the greenroof. The measurement point of runoff quality data were 8, located next to each experimental district. Also, the precipitation was measured by rain gauges(# RG2). The experimental investigation lasted from 21th July to 4th December, a total of 137 days. The results showed that the greenroof can contribute runoff retention and delay by soil, but the intensity of actual rain event affected the runoff reduction and delay. Overall, when was the rainy season, percent rainfall retention ranged 17.5% and runoff flow was delayed for 1-3 hours. But on the other hand, when was the typical rain event, percent rainfall retention ranged over 90% and runoff flow was delayed for 1-11 hours. In the result, the greenroof had the greatest runoff retention and delay, while for the typical rain event.

Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions (간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산)

  • Im, Jl-Hoon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

Case Study on Absolute Gravity Measurement using FG-5 (FG-5 절대중력계 사례조사 연구)

  • Lee, Young-Jin;Son, Soo-Ik;Lee, Myeong-Jun;Jung, Kwang-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.197-199
    • /
    • 2010
  • A gravity survey is a base of research earth gravity field determined, perception of the vertical motion, change of Geoid, sea-level changes, climate change etc. Recently, FG-5 was adopted in NGII. NGII has completed 4 points of absolute gravity survey and 1,400 points of relative gravity survey in 2009 to aim to observe 20 points of absolute gravity survey and 6,000 points of gravity control point by 2013. Using results of gravity survey, NGII will provide citizen with data for research about renewal of geoid model and geophysics. This study aims to go over examples of utilization of absolute gravimeter & method of utilization in korea.

  • PDF

Analysis on Aerodynamic Heating on Spike and Dome Configuration (스파이크와 돔 형상의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109-113
    • /
    • 2002
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

  • PDF

Boundary-adaptive Despeckling : Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.295-309
    • /
    • 2009
  • In this study, an iterative maximum a posteriori (MAP) approach using a Bayesian model of Markovrandom field (MRF) was proposed for despeckling images that contains speckle. Image process is assumed to combine the random fields associated with the observed intensity process and the image texture process respectively. The objective measure for determining the optimal restoration of this "double compound stochastic" image process is based on Bayes' theorem, and the MAP estimation employs the Point-Jacobian iteration to obtain the optimal solution. In the proposed algorithm, MRF is used to quantify the spatial interaction probabilistically, that is, to provide a type of prior information on the image texture and the neighbor window of any size is defined for contextual information on a local region. However, the window of a certain size would result in using wrong information for the estimation from adjacent regions with different characteristics at the pixels close to or on boundary. To overcome this problem, the new method is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The proximity to boundary is estimated using a non-uniformity measurement based on standard deviation of local region. The new scheme has been extensively evaluated using simulation data, and the experimental results show a considerable improvement in despeckling the images that contain speckle.

Thermography-based coating thickness estimation for steel structures using model-agnostic meta-learning

  • Jun Lee;Soonkyu Hwang;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • This paper proposes a thermography-based coating thickness estimation method for steel structures using model-agnostic meta-learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured using an infrared (IR) camera. The measured heat responses are then analyzed using model-agnostic meta-learning to estimate the coating thickness, which is visualized throughout the inspection surface of the steel structure. Current coating thickness estimation methods rely on point measurement and their inspection area is limited to a single point, whereas the proposed method can inspect a larger area with higher accuracy. In contrast to previous ANN-based methods, which require a large amount of data for training and validation, the proposed method can estimate the coating thickness using only 10- pixel points for each material. In addition, the proposed model has broader applicability than previous methods, allowing it to be applied to various materials after meta-training. The performance of the proposed method was validated using laboratory-scale and field tests with different coating materials; the results demonstrated that the error of the proposed method was less than 5% when estimating coating thicknesses ranging from 40 to 500 ㎛.