Korean Journal of Remote Sensing, Vol.25, No.3, 2009, pp.295~309

Boundary-adaptive Despeckling : Simulation Study
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Abstract : In this study, an iterative maximum a posteriori (MAP) approach using a Bayesian model of
Markovrandom field (MRF) was proposed for despeckling images that contains speckle. Image process is
assumed to combine the random fields associated with the observed intensity process and the image texture
process respectively. The objective measure for determining the optimal restoration of this “double
compound stochastic” image process is based on Bayes’ theorem, and the MAP estimation employs the
Point-Jacobian iteration to obtain the optimal solution. In the proposed algorithm, MRF is used to quantify
the spatial interaction probabilistically, that is, to provide a type of prior information on the image texture
and the neighbor window of any size is defined for contextual information on a local region. However, the
window of a certain size would result in using wrong information for the estimation from adjacent regions
with different characteristics at the pixels close to or on boundary. To overcome this problem, the new
method is designed to use less information from more distant neighbors as the pixel is closer to boundary. It
can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The
proximity to boundary is estimated using a non-uniformity measurement based on standard deviation of local
region. The new scheme has been extensively evaluated using simulation data, and the experimental results
show a considerable improvement in despeckling the images that contain speckle.

Key Words : despeckling, Point-Jacobian iteration, adaptive estimation, boundary-adaptive, Bayesian
Model.

1. Introduction

The radar wave coherence produces “speckle” in
SAR imagery. This phenomenon gives to the images
a granular appearance that complicates image
analysis and interpretation in remote sensing tasks.
Although it is a deterministic phenomenon due to the
coherent processing of terrain backscattering signals,
the speckle contribution is often considered as noise.

A major issue for the use of synthetic aperture radar

(SAR) imagery is to remove speckle without
destroying important image features.

Speckle noise is supposed to be dependent on the
signal intensity in the sense that the noise level
increases with the brightness. Many approaches have
been proposed to reduce the speckle effect in
coherent imaging. Early works used the adaptive
filters based on linear minimum mean square error by
taking local statistics. The best-known filters include
the Lee filter (Lee, 1986), Frost filter (Frost et al.,
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1982), Kuan filter (Kuan ef al., 1985). The Frost filter
was designed as an adaptive Wiener filter that
assumed an autoregressive exponential model for the
scene reflectivity. Kuan considered a multiplicative
speckle model and designed a linear filter based on
the minimum mean;square error criterion, optimal
when both the scene and the detected intensities are
Gaussian distributed. The Lee filter was a particular
case of the Kuan filter based on a linear
approximation made for the multiplicative noise
model. More recent works include the use of
anisotropic diffusion. Diffusion algorithms remove
noise by moditying the image via a partial differential
equation. Since Perona and Malik (1990} introduced
the formulation of anisotropic diffusion using an edge
stopping function, the PDE-based approaches have
been suggested to remove speckle noise with
effective edge preserving. They include speckle-
reducing anisotropic diffusion (SRAD) (Yu et al.,
2002), detail-preserving anisotropic diffusion
(DPAD) (Aja-Fern?ndez and L7pez, 2006) and
oriented speckle reducing anisotropic diffusion
(OSRAD) (Krissian et al., 2007). SRAD is the edge
sensitive diffusion for specked images, in the same
way that conventional anisotropic diffusion is the
edge-sensitive diffusion for images corrupted with
additive noise, and DPAD is a more robust way to
estimate the coefficient of variation using different
neighborhood sizes for filtering and noise estimation.
The OSRAD filter combines SRAD with a matrix
anisotropic diffusion and add a non-scalar component
to the SRAD filter that can perform directional
filtering of the image the structures. In most cases, the
corrected image is restored through a series of
iteration.

Lee (2007a) suggested an iterative approach for
despeckling the SAR images that are corrupted by
multiplicative speckle noise. It is a maximum a

posteriori (MAP) method using a Bayesian model

based on the lognormal distribution for image
intensity and a Markov random field (MRF) for
image texture. When the image intensity is
logarithmically transformed, the speckle noise
becomes approximately Gaussian additive noise and
it tends to a normal probability much faster than the
intensity distribution (Arsenault and April, 1976).
The MREF is incorporated into digital image analysis
by viewing pixel type s as states of molecules in a
lattice-like physical system defined on a Gibbs
random field (GRF) (Georgii, 1979). Because of the
MRF-GRF equivalence resulted from the
Hammersley-Clifford theorem (Kindermann and
Snell, 1982), the assignment of an energy function to
the physical system determines its Gibbs measure,
which is used to model molecular interactions. Thus,
this assignment also determines the MRF. The MAP
estimation of noise-free imagery employs a Point-
Jacobian iteration (Varga, 1962). The Point-Jacobian
iteration MAP (PJIMAP) scheme was proved to yield
much better results than the conventional approaches
for the speckle reduction (Lee, 2007a). Lee (2007b)
also proposed an alternative adaptive scheme for the
MAP estimation of Point-Jacobian iteration
(AIMAP). In the adaptive approach, the parameters
are computed using the updated data at each iteration,
while the PIIMAP uses the parameters estimated with
the original observation. AIMAP gives an
improvement in speckle reduction by using the
adaptive parameters for the Ponit-Jacobian iteration.
However, AIMAP is sensitive to the size of the
window employed to define the neighborhood system
of MRF. Using a large window of high order
neighborhood system is suitable for homogeneous
inner area, but results in smoothing over the boundary
between different regions and possibly fading the
detailed features. In this study, an approach to employ
variable sizes of the neighbor window depending on

the location has been proposed. According to how
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near to boundary, the new scheme assigns different
values into the parameters related to smoothing. The
proximity to boundary is measured by a simple
statistics based on local standard deviation.

The purpose of this paper is to develop and design
a boundary-adaptive scheme of despeckling images
that contain speckle through an extensive simulation
study. The paper is organized as follows. Section 2
contains a brief description of the Point-Jacobian
iteration approache, which was proposed for speckle
removal in the previous works. In Section 3, the
boundary-adaptive scheme proposed in this study is
presented in detail. The experimental results of
simulation data are reported to choose appropriate
input constants required for the new scheme in
Section 4. Finally, the conclusions are stated in

Section 5.

2. Point-Jacobian Iteration for MAP
Estimation

Image processes are assumed to combine the
random fields associated with intensity and texture
respectively. Given a noisy image from this double
compound stochastic image process, the objective
measure of determining the optimal restoration can be
established using Bayes’ theorem. The Bayesian
model utilizes the parameters related to smoothing
and bonding strength between neighbors. The
smoothing parameter represents the relative strength
of prior belief of spatial smoothness compared to
observational information, and the bonding strength
is represented by nonnegative coefficients associated
with local texture model.

Given an observed image Y, the Bayesian MAP
estimation is to find the mode of the posterior
probability distribution of the noise-free vector X, or

equivalently, to maximize the log-likelthood function
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IPN=1In P(Y|X) + In P(X). (1)

The MREF is used to quantify the spatial interaction
probabilistically, that is, to provide a type of prior
information on the image texture. Due to the MRF-
GRF equivalence (Kindermann and Snell, 1982), an
MREF is determined with a Gibbs measure. Let [, =
{12,-- n} be the index set of the pixels in the image.
If R; is the index set of the neighbor pixels of the ith
pixel, R = {R;|i € I,} is the neighborhood system of
I,. A “clique” of {I,,, R}, c, is a subset of I, such that
every pair of distinct indices in ¢ represents pixels
which are mutual neighbors, and C denotes the set of
all cliques. A GRF relative to the graph {/,, R} on X

is defined as
P(X)=Z" exp{-E(X)
EX) = %:C V(X) (energy function)

@

where Z is a normalizing constant and V. is a
potential function which has the property that it
depends only on X and c. Specification of C and V, is
sufficient to formulate a Gibbs measure for the local
texture model. A particular class of GRF, in which
the energy function is expressed in terms of non-
symmetric “pair-potentials,” is used in this study
(Kindermann and Snell, 1982). Here, the energy
function of GRF is specified as a quadratic function
of X = {x;, i€1,} which defines the probability
structure of the texture process:
EX)= 2 & ot 5P 3

where C, is the pair-clique system and aj; is a
nonnegative coefficient which represents the
“bonding strength” of the ith and the jth pixels.

Using the intensity model of Gaussian additive
noise and the texture model of GRF, the log-
likelihood function of Eq. (1) is:

IPN cc (Y-X)ZW(Y-X)-XBX )

where X is the covariance matrix of X and B = {f;} is
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the bonding strength matrix where

- for iHEC,
for (i =
ﬂlj (i,/)é G ij or (i=j)
0 otherwise

Since the log-likelihood function of Eq. (4) is
convex, the MAP estimate of X is obtained by taking

the first derivative:
Zy-X)-Bx=0. 5

By solving Eq. (5) with the Point-Jacobian
iteration (Varga, 1962), the noise-free intensity can be
recovered iteratively (Lee, 2007a) from the
observation Y = {y; | i€1,}: at the kth iteration for Vi
€1, given an initial estimate, X = y;,

1 2 ¥ k-l
= oi%yi- X5 6
o+ Bl e, ©

The iteration converges to a unique solution since
¥(M; 'Bg)<1 where ¥(+)denotes the spectral radius
(Cullen, 1972) and

M, = diagonal{c;* + By, i€1,}
B, = {b;=f; | bi=0}

3. Boundary-Adaptive Parameter
Estimation

Various regions constituting an image can be
characterized by textural components. The bonding
strength coefficients of Eq. (3) are associated with local
interaction between neighboring pixels and can provide

some contextual information on the local region.

1) Bonding Strength Coefficient

For the (k+1)th iteration, given the estimate of the
previous iteration, )2;( = {&F, i€}, the posterior
probability of X can be stated under the assumption of
il ~ N, of):

X&) K- 0 T Re-0)-XBX, ()

where X = diagonal{ct;, i€1,}. The Bayesian MAP

estimation of X can be then considered as an

optimization problem:
i s~ 2
agmin{ 3 5 oyl ®

subject to 032K - x)2 <r, Vi€l

where r is a given constant related to the distribution
of x*. Since the objective function and the constraints
are convex, the optimization of Eq. (8) is restated
using a Lagrange multiplier as:

argmin{ 2

X iel,

e, i Aol )

or equivalently, if ¢; = 1/4; and 6;; = a;,
arg mm{ 2 ®i

x €l Oy~ xP+ oGk - x)2-7)

}.(10)

>
iNEC,
Suppose {Q,j,jEI,,l g; 0; = 1} as the weights
JEI,

associated with the relative strength of interaction
between the individual types of pair-cliques at the ith
pixel. These interaction coefficients represent a
textural component for the local region corresponding
to the ith pixel, and, adopting a Bayesian
interpretation, ¢; is referred to as a parameter that
represents the relative strength of prior beliefs
compared to information on the observation.

From Eq. (10), if the normalized interaction
coefficients are predetermined, {@;} are then
estimated by solving the first derivative equation
system (Lee, 2007b):

_ | r
Pi= 1n
) ek _$K2
y Ul%t (i,])Z€: c Qlj(xl xj)

It is natural that neighboring pixels with more
similar values have a higher probability of having the
same intensity level and the bonding strength
between pixels is inversely proportional to the

distance between them. Under this supposition, the
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weight can be chosen:

d; Rk -zH2
" ”( 112 = forG,peCp
;= e, dj [k -2k (12)
0 otherwise

where dj; is the geometric distance between the ith
and jth pixels, and the sample variance of local region
can be used as an estimate of 07;

., _ Siewtif -

B= (13)

where W/ is the index set of the pixels belonging to
the window that is centered at the ith pixel and
associated with the neighborhood system of C,, n, is
the number of the pixels of W/ and x¥ is the average
of {F,ieWF}.

If one of the neighbor pixels has a very close value
with the center pixel value compared to them of the
other neighbor pixels, the weight of this neighbor
pixel is very large relatively, and the contextual
information of neighborhood is then dominated by
this pixel, even if other neighbors have right
information. This problem can be alleviated by giving

a limitation on the quadratic distance of pixel-pair in

Eq. (12):

ij—,l 5152
. —_— for (i, H €C,
15-2 P
Oy=| 22, ditdi (14)
0 otherwise
where
57 = max{(RF -RKP, nsoh) (15)

and 7)s is a predetermined constant. The choice of
smaller 7] results in giving more weight to the
neighbor pixels whose values are closer to the center
pixel value. In Eq. (6), ;= V@iéij forisj and B = ¢,
and at the (k+1)th iteration of APJI,

Boundary-adapfive Despeckling : Simulation Study

LYS W S
X! =T+v Vi+ Vi i )Zcpejxj (16)

where v; = 6%
2) Boundary-Adaptive Parameter

The MAP estimation using the neighbor window
associated with the pair clique system would use
wrong information from adjacent regions for the
pixels located in the region close to or on boundary.
To overcome this problem, the new method is
designed to use a smaller size of the neighbor
window and a lower value of the bonding coefficients
as the location of pixels is closer to boundary. The
small window can reduce the possibility to involve
the pixel values of adjacent region with different
characteristics, and the low value of the bonding
coefficients can make the estimation fit to the own
value of the pixel more than the values of the
neighbor pixels.

Homogeneity is mainly related to the local
information of an image and reflects how uniform an
image region is. Since a region including boundary is
non-uniform, the homogeneity plays important role to
find the region close to or on boundary. As a
proximity measure to boundary, this study uses a
simple non-parametric statistics based on the sample
standard deviation that describes homogeneity within
local region. The proximity coefficient is defined in
[0 I1:

Si— minje W,."{Sj}

= : a7
max;e w{s;} - minje w{s;}
Ljew i3’
Si= |——,
T 1y

W! is the index set of the pixels belonging to the
window centered at the ith pixel, r, the number of W/
the pixels of and y; the average of observed values in

W,-h. It is supposed that the measure of Eq. (17) has a
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larger value for the pixels closer to boundary. The
boundary-adaptive bonding strength coefficients are
estimated:

1
| T (18)
\/O-]%l( )%C 91](—"1 _x])
:77115:2
) —_— for (i,)eC
2 p
0,7 = (t,m)ZEC dtmmatm (19)
0 otherwise
5,12 = max{(X, _x] ) (1- 7[1)77(”%1} (20)

where 7 is a constant associated with rapidity in
reduction of window size. The proposed scheme is
designed to use a smaller neighbor window, smaller
constants of r in Eq. (11) and 75 of Eq. (15) as the
pixel considered is closer to the boundary. For larger

7, the window size decreases more rapidly.

4. Experiments

A simple statistical model of multiplicative noise
(Dainty, 1984) has been often used for the speckle
reduction. A simple model of SAR imagery is usually
given by

z=vini,iel, (20)

where {7);} are multiplicative noise following a log-
normal distribution. In this study, the adaptive Point-
Jacobian iteration (APJI) was applied to the log-
transformed intensity observation. First, the proposed
scheme was extensively examined using simulation
SAR data generated by the Monte Carlo method to
evaluate the effect of the predetermined constants
used in the algorithm.

For the Point-Jacobian iteration of Eq. (6), s? of
Eq. (17) was used as the estimate of o? and the

condition of convergence was defined as

ZiEI,,

J?,h—)?,-“l < st a1
<k, -

n

where k. << 1 is a given constant. The APJI scheme
commonly requires three predetermined constants,
the order of W7, r of Eq. (8) and 75 of Eq. (15), and
the boundary adaption requires two more constants,
the order of W in Eq. (17) and 7 of Eq. (19). In the
boundary adaptive scheme, the local range for the
estimation of proximity proximity to boundary should
be larger than or equal to the neighbor area associated
with C,,. It is proper that W, which defines local
region to compute the proximity measure and the
estimate of o7 of Eq. (17), is chosen to have the same
order as WY with a minimum order. In this study, the
square windows that have the size of (2m+1) X
(2m+1) for the mth order were employed for W/ and
W{l, k. was given with 0.01, and the minimum order
of W was set to the third.

If the number of scattering points per resolution
cell is large in SAR, a fully developed speckle pattern
can be modeled as the magnitude of a complex
Gaussian field with independent and identically
distributed real and imaginary components
(Goodman, 1976). It leads to the Rayleigh distribution
as the intensity distribution model. For the
experiment, 16-bit simulation SAR images with the
Rayleigh distribution were generated using 6 patterns.

First, APJI was applied to the data simulated from
Pattern A, a check-board pattern of 512X 512. Fig. 1
shows in the first row the pattern, the simulated
speckled-image and the histogram of observation data
distribution. In the check-board pattern, the size of
each square is 64 X 64, and it has 2 classes with the
noise-free intensities of 200 and 500 respectively.
The bar in the histogram indicates noise-free
intensity. The second row illustrates the despeckled
images resulted from both of the AP filters with and
without boundary adaption. The figure includes the
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Fig. 1. Despeckled sub-images (2nd row) and histogram of despeckled data (3rd row) resulted from APJI using Order, = 9 and 75 =
0.5 : In the 1st row, image pattern for simulation, simulated observation of sub-area and histogram of observed data (from left).

histograms that represent the distribution of the
despeckled data in the third row. Tables 1 and 2
contain quantitative comparison between the
algorithms with and without boundary adaption. For

quantitative comparison, this study uses three

measures: Diffy.., Errory, and Errory. Diffy., represents
the level of difference between different regions on
boundary defined as:

.%,' “:{‘j

> max(——- -0) 22)

D{ﬂ bq. = s
G)EB, Xi~ A

~301~



Kore:an Journal of Remote Sensing, Vol.25, No.3, 2009

Tabe 1. Comparison of despeckled results of boundary-
adaptive and non-boundary-adaptive APJls applied
to simulation data of Pattern A in Fig. 1

boundary-adaption non-boundary-adaption
(t=200) (r=10)

Diffy, | Errory | Errorg | Diffp. | Errory | Errory
01 076 | 381 | 470 | 078 | 755 | 747

Ordler,) 75

05 1056 134 | 158 | 053 | 140 | 145

10 | 041 080 | 138 | 038 | 099 | 143

20 1027 | 099 | 168 | 025|105 | 176

01 074|389 363|076 | 693 | 691
05 0353099 | 146 | 052 | 170 | 1.77

[

10 1037 | 088 151 | 035 127 | 186
20 1026|108 | 180 | 022 | 1.10 | 235
01 1072240 | 305 | 075 | 744 | 679
05 1052109136 052|200 | 216
10 1036 074 | 154 | 033 | 1.71 | 230
20 1025092 1179021133272
01 1071220 | 264|076 | 702 | 688
05 051 1095|126 |052 233|254

9

10 1035 080 | 151 | 032 | 1.76 | 269
20 1025090 | 185|020 | 1.58 | 3.06

Table 2. Comparison of despeckled results of boundary-
adaptive and non-boundary adaptive APJls applied
to simulation data of Pattern A in Fig. 1

boundary-adaption non-boundary-adaption
(r=50) (r=80)

Diffy, | Errory | Errorg | Diffy. | Errory | Errory

Order, 115

0.1 | 066239355 059 | 180 | 3.26
05 1049|103 | 1.16 | 041 | 084 | 1.11
10 1036076 | 1.15 | 025 | 079 | 160
20 1020 073|199 016|096 | 237
01 1063265 300|058 214|295
05 [ 046 | 125 | 1.36 | 0.38 | 1.04 | 1.30
10 1030 095|154 | 021 | 1.11 | 226

T

20 1 015,088 291 012|086 | 328
01 | 062321 |330|058 275312
05 1045 150 | 165 | 037 | 146 | 1.60
10 1026 {093 | 199|018 | 092 | 289
20 1013|101 |369 011|098 | 388

0.1 1063361 385]059 327 357
05 | 045 | 185|194 | 036|174 | 194

10 | 0241123 | 258 | 017 | 123 352

20 1012119 386 | 012 | 120 | 413

where B, is the index set of adjacent pair-pixels on
boundary, x; and X; the noise-free and despeckled
intensities of the ith pixel respectively. The bigger
Diffp is, the better the despeckled image is in
contrast. Errory, and Errory represents classification
error in percent of two simple methods using the
points of histogram valley as thresholds and the
Euclidian distance from class mean-intensity
respectively. The class mean-intensity is computed by
averaging the despeckled intensities of the pixels
belonging to each class. As the despeckled images
agrees more with true pattern, the classification has
smaller error. The histogram of despeckled data in
Fig. 1 illustrates the histogram valley, which is
pointed by arrow, and the class mean-intensity,
whose value is corresponding to the x-coordinate of
the bar. In the figures and tables, Order, represents
the order of W?.

The first histogram of Fig. | implies that the
simulated data are well distributed with a left-skew
distribution as simulation of SAR observation. From
the results of Tables 1 and 2, the boundary contrast is
dependent on the values of three predetermined
constants, 775, 7 and r. The large r is required for inner
homogeneous area to relax higher speckle noise, but
it may fail in preserving the edges between different
regions. The value of r can be fixed at the stage of the
system installment for the boundary-adaptive
algorithm, which is designed to use a large value of r
in inner area by multiplying the inverse of the
proximity coefficient. An appropriate choice of r is a
unit value (r = 1) since the sample variance of local
region is used as the estimate of 0% of Eq. (8). The
resultant images in the second row of Fig. 1 show that
the boundary-adaptive scheme less faded boundary
especially at the corner, as well as relaxing speckie in
inner area as much as the non-boundary-adaption
does with a large r. The histograms in the third row
indicate the results of both APJI schemes quite well



agree with the true pattern of two classes. Fig. 2
shows the effects of three input constants for the
boundary-adaptive APJI filter on the despeckied
results. As shown in Table 1, the despeckled images
of the boundary-adaptive filter yielded smaller

classification error compared to them of the non-

= 9.05,100) "

o

| S——
3 3

0

contrast.

(5,10,100)

R R ]
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e

boundary-adaption when the boundary contrast of
two results is similar. Table 2 shows that, when their
classification errors are much of a muchness, the

boundary-adaptive scheme has better boundary-

Next, the proposed boundary-adaptive APJI filter

oon s

W w40 &0 wa om0

Fig. 2. Despeckled sub-images and histogram of despeckled data resulted from applying Boundary-adaptive APJI with different sets

of three constants of (Ordery, s, 7) to simulation data of Pattern Ain Fig.1.
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was applied to the simulation data generated from
three patterns of 512 X512 having more complicate
structure. Fig. 3 displays the patterns used for
simulation and the simulated data having speckle
noise of Raleigh distribution in the first two rows, and
the despeckled sub-images resulted from applying the
boundary-adaptive APJI filter with different sets of
three constants to the simulation data. Pattern B is a
check-board pattern in which the size of each square
is 16 X 16, Patterns C and D have thin lines and small

Pattern B Pattern C Pattern D

B

Observations

W e
:Orderp =5,15=01,7=10.0)
Fig. 3. Despeckled sub-images resulted from applying
Boundary-adaptive APJI with different sets of three
constants to simulation data of Patterns B, C and D of
512 x 512 (1st and 2nd row).

squares respectively. Tables 3, 4 and 5 contain the
results that evaluate the despeckling of the APJI
filters for the simulation data of Fig. 3. Except using
the neighborhood system of order 1, the boundary-
adaptive scheme demonstrated much better capability
of despeckling the noisy data to agree with true

pattern for complicate scene. For the neighborhood

Table 3. Comparison of despeckled results of boundary-
adaptive and non-boundary-adaptive APJls applied
to simulation data of Pattern B in Fig. 3

boundary-adaption non-boundary-adaption
(T=100) (r=20)
Diffys | Errory, | Errory | Diffy,. | Errory | Errorg
0.1 | 100 |2666(1602| 1.00 |21.04|1594
1 05 | 084 |1484|12.68| 0.80 | 1505|1235
10 | 073 |10.14|1022| 067 | 8.78| 9.94
0.1 [076 | 7.32] 761|078 | 9.70| 946
3 05 | 056 | 428 | 445|054 | 494 | 5.08
10 | 040 | 3.79| 454|036 | 644 530
01 | 077 | 965| 8.68| 0.81 |1143|10.66
5 05 | 056 | 506| 502|054 | 579| 581
10 | 039 | 654| 611|032 | 523| 531
0.1 | 083 |1199|1101| 0.87 | 1286 12.10
7 05 | 056 |1331|1151} 055 | 665 650
10 | 043 |3221|1502]| 032 |36.15| 7.72

Ordery| 75

Table 4. Comparison of despeckled results of boundary-
adaptive and non-boundary-adaptive APJls applied
to simulation data of Pattern C in Fig. 3

boundary-adaption non-boundary-adaption
(r=100) r=20)

Diffy | Errory | Errory | Diffy. | Errory, | Errory
G.1 | 100 |11.13|2493| 099 | 953|2494
1 05 | 086 | 6.83(21.17| 0.80 | 620|20.72
10 [ 075 | 5.14|1701| 068 | 4.80|16.57
01 | 072 | 654| 8.14| 0.73 | 1029} 13.19
3 05 | 050 | 3.17| 384|034 539| 6.19
10 | 034 | 523| 643|020 | 687 | 9.82
0.1 | 071 | 552| 638| 0.74 | 1095|11.68
5 05 [ 049 | 485 587|023 | 7921290
10 | 031 | 628 9.75| 0.14 | 8.75(1581
0.1 072 576| 5.74| 0.79 | 10.87 | 10.84
7 05 052 572 742|018 | 9481736
10 | 035 | 7.04 (1193 0.13 | 1041 |19.52

Ordery| 75
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Table 5. Comparison of despeckled results of boundary-
adaptive and non-boundary- adaptive APJIs applied
to simulation data of Pattern D in Fig. 3

boundary-adaption non-boundary-adaption
Order,| ns (t=100) r=20)

Diffyy | Errory | Errory | Diffps | Errory | Errorg

0.1 | 1.00 | 262 | 649 099 | 263 | 649

1 05 | 086 | 212|373 |080 | 211 387
10 1075|235 | 271 | 068 | 1.82 | 287

0.1 | 087|173 128 | 084 | 156 | 143

3 05 070|110 | 1.10 | 059 | 191 | 1.89
10 | 051 | 300 | 179 | 034 | 382 | 424

0.1 | 088 | 143 | 142 | 090 | 227 | 2.14

5 05 | 070 | 173 | 1.70 | 044 | 542 | 1185
10 | 050 | 317 | 230 | 040 | 556 [11.19

0.1 | 089|158 152101 | 327 | 357

7 05 | 071|175 | 173 | 047 | 960 2163
10 | 054 | 300 | 264 | 043 | 831 1734

system of the lowest order, both algorithms of the
APII filter would produce the results to some extent
fit to the observation rather than consistent with true
pattern, and they then appear similarly. The use of the
lowest order system may be better in visual
interpretation for the scene of very complex structure,
but is not suitable for further post-processing such as

image classification. The results of the three tables

Boundary-adaptive Despeckling : Simulation Study

suggest for the data from a complicate scene that the
ARJI filter uses relatively small Order), but greater than
one, is chosen for APJI filter is choose large 75 for large
Ordery,. It is also implied in the following experimental
results of Table 6.

The boundary-adaptive scheme was tested using
the data simulated from two patterns, shown in Figs.
4 and 5. The results were compared to them of the
four adaptive filters, enhanced Lee filter, enhanced
Frost filter, Gamma filter and Kuan filter, which are
installed in ENVI 4.2. The experiment used the filter
size of 5% 3 for all the conventional methods. The
histograms of the despeckled data exhibit superior
performance of the APJI filter in these figures, and
they include the class maps generated from the
despeckled data by the simple histogram valley
approach. As shown in the figures, all the
conventional filters failed in producing the
despeckled images to agree with the true pattern of 5
classes as much as the APJI filter did, and yielded
very similar results except the Kuan filter. Tables 6
and 7 contains the evaluation measures of the results
of the boundary-adaptive APJI filter with different

predetermined constants and the conventional filters

Table 6. Evaluation of despeckied results yielded from boundary-adaptive APJls using different sets of (Order,, 715) with 7 = 10.0 for

simulation data of Patterns E and F in Figs. 4 and 5

Order, 15 Patten E 1 Pattern F

Diffp. Errory, Errory Diffp+ Errory Errory

05 040 536 526 0.1 065 19.17 1976
3 10 0.30 447 463 05 041 7.17 695
20 020 5.19 506 10 031 757 737
05 036 3.10 32 0.1 058 1143 1157
5 10 025 348 359 | 05 038 656 6.11
20 0.17 443 446 | 10 027 833 775
05 035 347 3.15 0.1 055 8.56 872
7 10 023 382 390 05 | 036 6.98 6.69
20 0.15 503 512 10 025 10.10 920
05 034 3.19 337 0.1 054 836 | 193
9 10 022 435 443 05 035 8.09 763
20 0.15 594 591 10 024 1143 1105
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Class Map generated from Despeckled
Pattern E of 1024 X 1024 with 5 Classes Image of Boundary-adaptive APJI

= Observation T ** Boundary-adaptive APJI
25
"I Enhanced Lee Filter P b

Gamma Filter =/ Kuan Filter a3

Fig. 4. Histograms of despeckled data resulted from applying Boundary-adaptive APJI with (Order, =5, ns = 0.5, 7 =
10.0), and four conventional adaptive filters using filter size of 5x 5 to simulation data of Pattern E.
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Class Map generated from Despeckled
Pattern F of 1024 X 1024 with 5 Classes Image of Boundary-adaptive APJ1

Observation T"' <o Boundary-adaptive APJI

00 o0 10 [ oo 15%; 000 500 0 3500

I Enhanced Lee Filter 1 “I'" Enhanced Frost Filter

om 418

%0 100 1500 2000 2500 000 M0 4000 k0 Lo o 0 300 160 2000 2900 0D 3500 4000 4500 8000

Gamma Filter P

1000 ‘ he

o S0 000 1e00 2000 2600 %000 WD ADD) 400 B0

Fig. 5. Histograms of despeckled data resutted from applying Boundary-adaptive APJi with (Order, = 5, 715 = 0.5, 7=
10.0), and four conventional adaptive filters using filter size of 5 x 5 to simuiation data of Pattern F.
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Table 7. Comparison of despeckled results of three conventional
adaptive filters using filter size of 5x 5 applied to
simulation data of Patterns E and F in Figs. 4 and 5

Pattern E Pattern F
Diffi. | Errory|Error4| Diffy, | Errory|Errory
Enhanced Lee | 0.38 | 18.28 | 15.15| 040 | 17.89 | 14.60
Enhanced Frost| 026 | 18.36 | 14.84 | 028 | 18.04 | 1482

Gamma | 0.24 [19.11 | 1468 | 026 | 16.89 | 14.95

Filter

respectively. The evaluation of the results of Pattern F
in Table 6 indicates that it is a good choice to use
smaller 715 for larger Order, and, conversely, larger
ns for smaller Order,. As shown in Table 7, the
performance of the conventional filters suffers by
comparison with the proposed filter. Note that the

Errorg value of original simulation data of Pattern E

Pattern

(Order, =3 .15 =0.5.71=10.0) (Order, =515 =0.

Comentional Adaptive Filter

(Gamma Fihe;i !

(Fnhance T_:ee Flher) i

Fig. 6. Despeckled sub-images resulted from applying
Boundary-adaptive APJI and two conventional
adaptive filters to simulation data of Pattern F

is 20.4%. Fig 6. shows the pattern and observation of
sub-area including the despeckled sub-images
resulted from the boundary-adaptive APJI filters and

the conventional adaptive filters.

5. Conclusions

In this study, a boundary adaptive iterative scheme
for despeckling images that contain speckle was
developed by evolving the Point-Jacobian iteration
MAP filter proposed in Lee (2007a). The use of large
window results in improper smoothing in the
boundary area of small regions. A larger window
smoothes the image to some extent and results in
fading the detailed features existed in the scene. This
problem can be overcome by using the boundary-
adaptive scheme to employ the neighbor windows of
variable size according to how near to boundary. The
proximity to boundary is estimated by the non-
uniformity measurement.

This study extensively experimented using
simulation data to properly choose the predetermined
constants, Order,, 1]s and 7 for the boundary-adaptive
algorithm. The proposed scheme yields better results
with the neighborhood system of higher order for the
image of plain structure, while using the lower order
for the image of complicate structure. It is suggested
to choose Order,, in the range of 3 and 7. For larger
Order,, smaller 15 works better, and, conversely,
larger 75 for smaller Order;,. The best choice of 75
would be between 0.5 and 1.0. Though the
experimental results related to the choice of 7 are not
presented in this paper, it is suggested to choose
between 5.0 and 20.0, and the lager 7, the more

boundary-contrast, as shown in Tables 1 and 2.

-308-



Acknowledgements

This research was supported by the Kyungwon
University Research Fund in 2009.

References

Aja-Fernandez, S. and C. Alberaola-Lopez, 2006. On
the estimation of the coefficient of variation
for anisotropic diffusion speckling filtering,
IEEE Trans. on Image Proc., 15(9): 2694 -
2701.

Arsenault H. H. and G. April, 1976. Properties of
speckle integrated with a finite aperture and
logarithmically transformed, J. Opt. Soc.
Amer., 06: 1160-1163.

Cullen, C. G., 1972. Matrices and Linear
Transformations. Reading, MA: Addison-
Wesley.

Dainty, J. C., 1984. Laser Speckle and Related
Phenomena, Second Enlarged Edition.

Frost, V. S.,J. A. Stiles, K. S. Shanmugan, and J. C.
Holtzman, 1982. A model for radar images
and its application to adaptive digital filtering
of multiplicative noise, IEEE Trans. Pattern
Anal. Mach. Intell., 4: 157-165

Georgii, H. O., 1979. Canonical Gibbs Measure.
Berlin, Germany: Springer-Verlag.

Goodman, J. W., 1976. Some fundamental properties
of speckle, J. Opt. Soc. Amer., 66: 1145-1150.

Boundary-adaptive Despeckiing : Simulation Study

Kindermann R. and J. L. Snell, 1982. Markov
Random Fields and Their Application,
Providence, R.1.: Amer. Math. Soc.

Krissan. K., C-F. Westin, R. Kikinis, and K.
Vosburgh, 2007. Orientee speckle reducing
anisotropic diffusion, /EEE Trans. on Image
Proc.,16(5): 1412-1424.

Kuan, D. T., A. A. Sawchuk, and P. Chavel, 1985.
Adaptive noise smoothing filter for images
with signal-dependent noise, IEEE Trans.
Pattern Anal. Machine Intell., 7: 165-177.

Lee,J. S., 1986. Speckle suppression and analysis for
synthetic aperture radar, Opt. Eng., 25: 656-
643.

Lee, S-H, 2007a. Speckle Removal of SAR Imagery
Using a Point-Jacobian Iteration MAP
Estimation, Korean J. Remote Sens., 23(1):
33-42.

Lee, S-H, 2007b. Adaptive Iterative Despeckling of
SAR Imagery, Korean J. Remote Sens.,
23(5): 455-464.

Perona, P. and J. Malik, 1990. Scale space and edge
detection using anisotropic diffusion, IEEE
Trans. Pattern Anal. Machine Intell., 12: 629-
639.

Varga, R. S., 1962. Matrix Iterative Analysis,
Englewood Cliffs, NJ: Prentice-Hall.

Yu, Y., and S. Acton, 2002. Speckle reduction
anisotropic diffusion, IEEE Trans. on Image
Proc., 11(11): 1260-1270.

-309-



