• Title/Summary/Keyword: Field installation test

Search Result 276, Processing Time 0.025 seconds

Fabrication and Tests of the 24 kV class Hybrid Superconducting Fault Current Limiter

  • Lee, B.W.;Sim, J.;Park, K.B.;Oh, I.S.;Yim, S.W.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.32-36
    • /
    • 2007
  • We fabricated and tested a novel hybrid superconducting fault current limiter (SFCL) of three-phase $24kV_{rms}/630A_{rms}$ rating. In order to apply conventional resistive SFCLs into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. In addition, the method to quench all components at the same instant needs very sophisticated skill and careful operation. Due to these problems, the practical applications of SFCL were pending. Therefore, in order to make practical SFCL, the price of SFCL should be lowered and should meet the demand of utilities. We designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for field tests are in the process.

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

Experimental Study of a Seismic Reinforcing System without Power Interruption and Movement for Electric Panel on the Access Floor (무정전-무이설 방식의 전기판넬 내진보강시스템 시험연구)

  • Jang, Jung-Bum;Lee, Jong-Rim;Hwang, Kyeong-Min;Ham, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • The seismic reinforcing system is developed to prevent damage to electric panels which are installed on the access floor and are essential to the operation of various basic facilities such as electric power and communication etc., from earthquakes. The seismic capacity of seismic reinforcing system is verified through the shaking table test. The seismic reinforcing system is intended for the electric panel on the access floor, and installation is possible without movement and power interruption of the electric panel. The enveloped response spectrum is adopted considering the location of the electric panel in the building as input motion for the shaking table test. The shaking table tests are carried out with two electric panels that can be considered representative of general electric panels, and two types of access floors such as wood panel and steel panel, which are commonly used in the industrial field. As a result of tests, it is confirmed that the seismic reinforcing system secures the seismic safety of electric panels by preventing the overturning of electric panels during and after the shaking table tests. In the event that the seismic reinforcing system is applied to the electric panel on the access floor, damage to the electric panel from an earthquake can be effectively prevented, which can greatly contribute to the stable operation of domestic basic facilities.

Field Load Test Results and Suggestion of Simple Settlement Estimation Method for Granular Compaction Piles (조립토 다짐말뚝에 대한 현장재하시험 결과 및 간편 침하량 산정방법의 제시)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Jung-Ho;Lee Sang-Kyung;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on tile load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the companion research paper, the method of estimating the settlement of granular compaction piles was proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. In the presented study, to validate a propriety of the previously proposed method, large scale field load tests and three dimensional numerical analyses are performed. The results are analyzed in detail and compared with the predicted settlements by the proposed method. Finally, a simple method to estimate the settlement of granular compaction piles is suggested for an easy application of the practical design.

Development of Steel Pipe Attached PHC Piles for Increasing Base Load Capacity of Bored Pre-cast Piles (매입말뚝의 선단지지력 증대를 위한 강관 부착 PHC파일 개발)

  • Paik, Kyu-Ho;Yang, Hee-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.53-63
    • /
    • 2013
  • Bored pre-cast piles using PHC piles is widely used in foundation of building structures constructed in urban areas because noise and vibration due to pile installation are low. However, since slime is formed at the base of borehole and the density of bearing stratum surrounding the base of borehole is decreased due to stress relaxation in drilling process of bored pre-cast pile method, the base load capacity of bored pre-cast piles is very low compared to the strength of bearing stratum. In this study, a new type of PHC pile, which short steel pipe with the same diameter as the PHC pile is attached to the pile tip, is developed to increase the base load capacity of bored pre-cast piles. In order to check the effect of the use of new PHC pile on the base load capacity of bored pre-cast piles, field pile load tests are performed for bored pre-cast piles using the new and existing PHC piles. Results of the pile load tests show that the new PHC pile gives higher base load capacity to bored pre-cast piles than the existing PHC pile, since the tip of new PHC pile is penetrated to undisturbed bearing stratum passing through the slime at the base of borehole and the loosened bearing stratum under the slime by pile driving using light hammer.

Cable vibration control with internal and external dampers: Theoretical analysis and field test validation

  • Di, Fangdian;Sun, Limin;Chen, Lin
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • For vibration control of stay cables in cable-stayed bridges, viscous dampers are frequently used, and they are regularly installed between the cable and the bridge deck. In practice, neoprene rubber bushings (or of other types) are also widely installed inside the cable guide pipe, mainly for reducing the bending stresses of the cable near its anchorages. Therefore, it is important to understand the effect of the bushings on the performance of the external damper. Besides, for long cables, external dampers installed at a single position near a cable end can no longer provide enough damping due to the sag effect and the limited installation distance. It is thus of interest to improve cable damping by additionally installing dampers inside the guide pipe. This paper hence studies the combined effects of an external damper and an internal damper (which can also model the bushings) on a stay cable. The internal damper is assumed to be a High Damping Rubber (HDR) damper, and the external damper is considered to be a viscous damper with intrinsic stiffness, and the cable sag is also considered. Both the cases when the two dampers are installed close to one cable end and respectively close to the two cable ends are studied. Asymptotic design formulas are derived for both cases considering that the dampers are close to the cable ends. It is shown that when the two dampers are placed close to different cable ends, their combined damping effects are approximately the sum of their separate contributions, regardless of small cable sag and damper intrinsic stiffness. When the two dampers are installed close to the same end, maximum damping that can be achieved by the external damper is generally degraded, regardless of properties of the HDR damper. Field tests on an existing cable-stayed bridge have further validated the influence of the internal damper on the performance of the external damper. The results suggest that the HDR is optimally placed in the guide pipe of the cable-pylon anchorage when installing viscous dampers at one position is insufficient. When an HDR damper or the bushing has to be installed near the external damper, their combined damping effects need to be evaluated using the presented methods.

A Study on the Field Application of Epoxy Impregnation Method Using Elastic Storage Tube (탄성저장관을 활용한 에폭시 주입공법의 현장 적용성에 관한 연구)

  • Kim, Chun-Ho;Lee, Ho-Jin;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.72-80
    • /
    • 2018
  • In this research, we tried to investigate the influence of concrete on cracks after applying to the actual construction site using the TPS construction method which can be easily charged by the mechanical injection method. To summarize the results, the following It is as follows. First, in the case of ultrasonic velocity, it can be seen that the ultrasonic wave passes rapidly at an average of about 36 mm / sec as compared with the syringe method when using the TPS method, and in the case of the injection depth, the syringe method In the case of TPS construction method, it showed an excellent tendency that 100% of the water retentive material was charged with all the formulations under a strong injection pressure. In the case of compressive strength, it was shown that the average was increased by 16.8% at the time of using the TPS construction method, and it was found to be structurally superior. Taken together, it is possible to confirm the behavior of the crack repairing agent by improving the quality by improving the strength and confirming the window installation by filling the injection material into the closed space at the crack site when using the TPS method compared with the syringe method. In addition, it is expected that construction time will be improved by shortening the construction period of about 5 days for the TPS construction method construction section 532 m, and usability will be expanded by the crack repair method of concrete structure.

A Study on Monitoring of Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method (희생양극법을 적용한 철도 레일의 방식효과 모니터링 연구)

  • Choi, Jung-Youl;Park, Jong-Yoon;Lee, Kyu-Yong;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.367-371
    • /
    • 2019
  • In this study, we proposed the sacrificial anode cathodic protection method as a countermeasure to reduce the corrosion of railway rails under oceanic climatic conditions and proved the anticorrosive effect experimentally. In addition, the proposed sacrificial anode cathodic protection method were tested on site to examine long-term rail corrosion monitoring and field applicability for more than 26 months and to prove the effectiveness of rail corrosion. As a result of monitoring the corrosion state using the cellophane tape method, the appearance of the applied sections with sacrificial anode cathodic protection method was good at the present time about 26 months after the field test laying, and no abnormalities and other abnormalities of the rail welded section and the rail web were found. Hence, in places where no sacrificial anodes were installed, rust progressed rapidly. In addition, the proper spacing of sacrificial anodes was found to form the most stable corrosion coating at 1.0 ~ 1.5m. After about 26 months of monitoring, the installation of sacrificial anodes could help stabilize the overall rail corrosion level, even if the spacing was somewhat wider.

A Study on Improvement of Storage Safety through Quality improvement of Torpedo Propulsion Battery (어뢰 추진전지 품질개선을 통한 저장안정성 향상에 관한 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.291-298
    • /
    • 2019
  • We describe the improvement of insulation performance and the prevention of electrolyte leakage in a single cell in order to prevent the fuming phenomenon caused by leakage of electrolyte in a lithium secondary battery in a submerged weapon (torpedo) operated in Korea. A torpedo using lithium secondary battery as a main power source (propulsion battery) can induce the heat and fuming phenomenon, which makes it inconvenient for naval equipment operation in Korea. In the simulation test, the electrolyte of some battery cells leaked in the battery pack unit, leading to a short circuit between the main power circuit and the terminal tab of the high voltage part. We analyzed the characteristics and mechanism of the lithium secondary battery during this heat generation and fuming phenomenon. In order to prevent leakage of the electrolyte in the lithium secondary battery, the design was improved via fundamental (terminal tap enhancement) and complementary (insulation block selection and installation) measures. Comparison of the performance test before and after the improvement showed that the tensile strength of the tap terminal was improved about 2 times and the withstand voltage characteristic was improved. The application of quality improvement measures resulted in no fuming even after more than 3 years of field operation. This result is expected to improve the operation and storage stability of the torpedo propulsion cell.

Analysis of Rana coreana Behavior According to the Slope Angle Degree of Escape Ramp (콘크리트 수로 탈출로 경사각에 따른 한국산개구리 행동 분석)

  • Lee, Taeho;Kim, Jungkwon;Seo, Jihye;Jang, Moonjeong;Choi, Taeyoung;Chang, Minho
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2022
  • The purpose of this study is to propose the angle-limit of the escape ramp by analyzing the frog behavior characteristics according to the inclination angle of the waterway escape ramp installed in the concrete U-bench plume pipe channel. Forthe experiment, an escape test device was manufactured with the same shape and number of materials applied in the field. And Rana coreana living in paddy wetlands were sel selected. The main behaviors of frogs on the slope were 'jumping', 'crawling' and 'slipping', and afterrecording the behavioralresults according to the inclination angle, statistical analysis was conducted using the chi-square test method. As a result of the analysis, there was no statistically significant difference between 30° and 40°. This result is an evidence for expanding the standard of inclination angle 30° suggested in the 'Guidelines for Installation and Management of Ecological Pathways' to a maximum of 40°. However, further research is required in that the escape ramp targets not only Korean frogs but also various small wild animals. However, considering that various wild animals are affected by artificial canals, additional studies using various target wild animals are needed.