• Title/Summary/Keyword: Field function

Search Result 4,379, Processing Time 0.033 seconds

IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE

  • Jung, Hwan-Yup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.375-384
    • /
    • 2008
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. Fix a prime divisor ${\ell}$ q-1. In this paper, we consider a ${\ell}$-cyclic real function field $k(\sqrt[{\ell}]P)$ as a subfield of the imaginary bicyclic function field K = $k(\sqrt[{\ell}]P,\;(\sqrt[{\ell}]{-Q})$, which is a composite field of $k(\sqrt[{\ell}]P)$ wit a ${\ell}$-cyclic totally imaginary function field $k(\sqrt[{\ell}]{-Q})$ of class number one. und give various conditions for the class number of $k(\sqrt[{\ell}]{P})$ to be one by using invariants of the relatively cyclic unramified extensions $K/F_i$ over ${\ell}$-cyclic totally imaginary function field $F_i=k(\sqrt[{\ell}]{-P^iQ})$ for $1{\leq}i{\leq}{\ell}-1$.

CIRCULAR UNITS IN A BICYCLIC FUNCTION FIELD

  • Ahn, Jaehyun;Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • For a real subextension of some cyclotomic function field with a non-cyclic Galois group order $l^2$, l being a prime different from the characteristic of function field, we compute the index of the Sinnott group of circular units.

  • PDF

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS

  • Ahn, Jaehyun;Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.699-704
    • /
    • 2010
  • In this paper, we prove that the Hilbert 2-class field tower of an imaginary quadratic function field $F=k({\sqrt{D})$ is infinite if $r_2({\mathcal{C}}(F))=4$ and exactly one monic irreducible divisor of D is of odd degree, except for one type of $R{\acute{e}}dei$ matrix of F. We also compute the density of such imaginary quadratic function fields F.

A FUNCTION-FIELD ANALOGUE OF THE GOLDBACH COUNTING FUNCTION AND THE ASSOCIATED DIRICHLET SERIES

  • Shigeki Egami;Kohji Matsumoto
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.135-145
    • /
    • 2024
  • We consider a function-field analogue of Dirichlet series associated with the Goldbach counting function, and prove that it can, or cannot, be continued meromorphically to the whole plane. When it cannot, we further prove the existence of the natural boundary of it.