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CIRCULAR UNITS IN A BICYCLIC FUNCTION FIELD

Jaehyun Ahn* and Hwanyup Jung**

Abstract. For a real subextension of some cyclotomic function
field with a non-cyclic Galois group order l2, l being a prime differ-
ent from the characteristic of function field, we compute the index
of the Sinnott group of circular units.

1. Introduction

The group E of units of an abelian number field K, though finitely
generated, is very difficult to compute. However, it contains the explic-
itly described group C of circular units, which has a finite index in E.
In 1980 Sinnott defined his generalisation of a group of circular units to
an abelian number field and found a general formula for the index ([4]):

[E : C] = hK2[K:Q]−1

∏
p|fK

[Kpe : Q]

[K : Q]
(R : U)

where fK =
∏

pe is the decomposition of the conductor fK of K into
prime factors, Kpe = K ∩ Qpe , and (R : U) is the Sinnott index of
the field K. The definition of (R : U) is quite complicated, it is only
known to very special cases. In [2], Kraemer computed the index [E : C]
explicitly and easily got the value of the Sinnott’s index (R : U) from
the Sinnott’s formula.

From [1], we see that

[O∗
F : CF ] =

(q − 1
δF

)[F+:k]−1
Q0h(OF+)

∏s
i=1[Fp

ei
i

: Fe]

[F : Fe][Ke : Fe]
(e+R : e+U)

d(F )
.

for a subfield F of some cyclotomic function field over a global function
field k. Suppose l is a prime not equal to char(k) and F a real abelian
extension of degree l2 over k with a non-cyclic Galois group and F is
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contained in some cyclotomic function field over Fq(T ). Then we have
δF = 1, Q0 = 1 ([1, Lemma 2.2]), d(F ) = 1. Therefore we have

(1.1) [E : C] = (q − 1)l2−1h(OF )lv−2(R : U),

where v is the number of subfields of degree l of F , which conductor
is a power of irreducible polynomials. As in the number field case, the
Sinnott index (R : U) is difficult to compute and known only some
special cases.

In this paper we will consider the case of a real subextension F of
a cyclotomic function field with a non-cyclic Galois group of order l2,
where l is a prime different from the characteristic of k. First, we find a
basis of C/B, where B is the product of the groups of circular units of
all proper subfields of F . Next, we directly compute [E : B], which gives
us the index [E : C]. From the index-formula (1.1), we easily compute
the Sinnot’s index (R : U).

Notation
A = Fq[T ], k = Fq(T )
F : a real abelian extension of degree l2 over k with a non-cyclic

Galois group. Here l is a prime, not equal to char(k). We assume that
F is contained in some cyclotomic function field.

G = Gal(F/k), the Galois group of F over k.
RF : the regulator of F
h(F ) (resp. h(OF )) : the divisor (resp. ideal) class number of F
Fi, fi : subfields of F of degree l and their conductors (0 ≤ i ≤ l)
Gi = Gal(F/Fi)
λN : the primitive N -torsion point. Here N ∈ A
KP

ei
i

= K(λP
ei
i

) P ei
i -th cyclotomic function field

XL : the group of Dirichlet characters corresponding to a field L
fχ : the conductor of a character χ
IP ⊆ G : the inertia group of P
E,D,C : the group of units, circular numbers and circular units of

F

2. Circular units

Since (A/P )∗ is cyclic for any irreducible polynomials P and G is
not cyclic, the conductor f of F can not be a power of an irreducible
polynomial. Therefore f is divisible by at least two different monic
irreducible polynomials. The group G = Gal(F/k) ∼= Fl×Fl has exactly
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l + 1 subgroups Gi of order l. Let Fi ⊂ F be the subfield of degree l
corresponding to Gi. Let δi be a fixed generator of Gal(Fi/k).

Lemma 2.1. The conductor f = cond(F ) of F has no square factors.

Proof. If P 2|f , then P 2|fχ for some χ ∈ XF . If χ = χP χP1 · · ·χPt is
a decomposition of χ, then P 2|fχP . Then p = char(k)||〈χP 〉|. Therefore
p must divide the ramification index of p in F ([5, Theorem 3.5].) Hence
p|[F : k] = l2, which is a contradiction.

From the same argument in [2], we have

Proposition 2.2. Let P1, . . . , Ps be all the monic irreducible poly-
nomials ramifying in F . If Qi = {j|Pj - fi, 1 ≤ j ≤ s} is the index set
for the monic irreducibles unramified in Fi, the the sets Q0, . . . , Ql are
mutually disjoint proper subsets of the set Q = {1, . . . , s} and we have

Q =
l⋃

i=0

Qi

The group D of cyclotomic numbers of F is the group generated by
F∗q , ε = NKf /F (λf ), εi = NKfi

/Fi
(λfi

).

Proposition 2.3. C/F∗q is a G-module generated by

η = NKf /F (λf ),

ηi =

{
NKfi

/Fi
(λfi

) for fi composite,

NKfi
/Fi

(λfi
)(1−δi) for fi irreducible.

Notation : For Pj - fi,

(δi|Fi)
kij = Frob−1(Pj , Fi),

kij ∈ Fl

From the almost same argument in [2],

Proposition 2.4. We have

ηl =
l∏

i=0

ε

∏
j∈Qi

(1−δkij )

i .

Corollary 2.5.

ηl =
l∏

i=0

ηβi
i ,
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where βi ∈ Z[δi] are defined as follows:

βi =

{∏
j∈Qi

(1− δ
kij

i ) if fi composite,∏
j∈Qi

(1− δ
kij

i )/(1− δi) if fi irreducible,

Let B be the subgroup of C/F∗q as a G-module generated by {ηi}.
We see that B =

∏l+1
i=1 Ci/F∗q , where Ci is the group of circular units of

Fi.

Proposition 2.6. The set Z = {ηδj
i

i : 0 ≤ i ≤ l, 0 ≤ j ≤ l − 2} is a
Z-basis of B.

Definition : For 0 ≤ i ≤ l we define:

ai =


−∞ if there is a j ∈ Qi such that kij = 0,

l − 1− |Qi| if there is no such j ∈ Qi and fi is composite,
l − |Qi| if there is no such j ∈ Qi and fi is irreducible,

We may assume that Gi,Ki are chosen such that

a0 ≥ a1 ≥ . . . ≥ al.

Let σ (resp. τ) be a fixed generator of G0 (resp. G1). For 2 ≤ i ≤ l,
let τσl−ni be a fixed generator of Gi, which defines ni ∈ F∗l in a unique
way. If we define n1 = 0, τ |Fi = σni |Fi for 1 ≤ i ≤ l. We may assume
that δ0 = τ, δi = σ for 1 ≤ i ≤ l.

Notation : Let k (resp. q) be the smallest i such that ai ≤ 0 (resp.
ai = −∞) (if no such i exists then k (resp. q) equals l + 1.

Notation : Put pij = η(1−τ)i(1−σ)j
.

S0 = {pij : j = 0, 0 ≤ i < a0}, Rm,n = {pij : i = m, 0 < j < n},

U =


∅ for k = 0,

S0 for k = 1,

S0 ∪R0,a1 ∪R1,a2−1 ∪ · · · ∪Rb−1,ab−(b−1) for k ≥ 2,

where b = 1 for k = 2, for k > 2, it is the greatest index i < k such that
ai > i.

Theorem 2.7. The set U is a basis of C/B.

Proof. The proof is the almost same as in the number field case ([2,
Section 4]).
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Corollary 2.8.

[C : B] =


1 for k = 0,

la0 for k = 1,

la0+(a1−1)+···+(ab−b) for k ≥ 2,

where b is defined as above.

3. Computation of the index [E:C]

Let ∞F be a fixed place of F lying above ∞. From [6, Proposition
4.1], we have

Lemma 3.1. Let χ ∈ XFi . Then we have∑
g∈G

χ(g) ord∞F (ηg
i ) =

{
l(q − 1)Lk(0, χ) if fi composite,

l(q − 1)(1− χ(δi)−1)Lk(0, χ) if fi irreducible.

First we compute [E : B].

Proposition 3.2. Let v be the number of subfields of F having an
irreducible conductor. Then we have

[E : B] = lv−2+
l(l−1)

2 (q − 1)l2−1h(OF ).

Proof. The proof is similar to the number field case([2, Proposition
5.1]). The regulator of the basis Z of B is

RB = |det(ord∞F (ηδjg
i ))|0≤i≤l,0≤j≤l−2,1 6=g∈G.

We enlarge the matrix to

M =


1 · · · 1 · · ·
...

...
ord∞F (ηδj

i ) · · · ord∞F (ηδjg
i ) · · ·

...
...


Put Z = (χ(g))g∈G,χ∈X . Note that |det(M)| = l2RB, |det(Z)| = ll

2
.

We assume that the first row (resp. column) corresponds to the trivial
automorphism (resp. character). The other rows (resp. columns) will
be indexed with ordered pairs (i, j) (resp. (m,n)) with 0 ≤ i, m ≤ l
and 1 ≤ j, n ≤ l−1 and arranged in an increasing lexicographical order.
The row (i, j) (resp. column (m,n)) corresponds to the automorphism
gj
i (resp. character χn

m), where gi (resp. χm) denotes a fixed generator
of Gi (resp. XKm).
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Now we evaluate MZ:
1. In the first row we get the numbers aχ =

∑
g∈G χ(g), so we have

(l2, 0, . . . , 0). 2. At (i, j), (m,n), with i 6= m we get

a(i,j),(m,n) = 0.

3. At (i, j), (i, n) we get

a(i,j),(m,n) =
∑
g∈G

χi,n(g) ord∞F (ηδj
i g

i ) = χi,n(δi)−jcin,

where cin =
∑

g∈G χi,n(g) ord∞F (ηg
i )

Thus we have

|det(MZ)| = l2
l∏

i=0

|det(a(i,j),(i,n))0≤j≤l−2,1≤n≤l−1|

= l2
l∏

i=0

(
l−1∏
n=1

|cin|) · |det(χi,n(δi)−j)0≤j≤l−2,1≤n≤l−1|

By Lemma 3.1, we have
l−1∏
n=1

|cin| =

{
ll−1(q − 1)l−1

∏l−1
n=1 |Lk(0, χi,n)| (fi comp.),

ll−1(q − 1)l−1
∏l−1

n=1 |1− χi,n(δ−1
i )||Lk(0, χi,n)| (fi irred.),

and
l−1∏
n=1

|1− χi,n(δ−1
i )| = l

Therefore we have

|det(MZ)|

= l2l(l+1)(l−1)(q − 1)(l+1)(l−1)lv
l∏

i=0

l−1∏
n=1

|Lk(0, χi,n)| ·
l∏

i=1

|det(χi,n(δi)−j)|

= l1+v+l2(q − 1)l2−1h(OF )RF

l∏
i=1

|det(χi,n(δi)−j)|

because
l∏

i=0

l−1∏
n=1

|Lk(0, χi,n)| =
∏

χ0 6=χ∈XF

|Lk(0, χ)| = h(F ) = h(OF )RF .

Let
Fi = (χi,n(δi)−j)0≤j≤l−2,1≤n≤l−1
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and
Hi = (χn

i (δi)−j)0≤j≤l−1,0≤n≤l−1.

Then det Hi = l · det Fi. Thus

|det Fi| =
1
l
|det Hi| =

1
l
· l

l
2 = l

l−2
2

and so

|det(MZ)| = l1+v+l2(q − 1)l2−1h(OF )RF l
(l−2)(l+1)

2

Since |det Z| = ll
2

and |det M | = l2RB, we have

RB = lv−2+
l(l−1)

2 (q − 1)l2−1h(OF )RF .

Since [E : B] = RB/RF , we have

[E : B] = lv−2+
l(l−1)

2 (q − 1)l2−1h(OF ).

Finally we compute [E : C] using [E : B] = [E : C][C : B].

Theorem 3.3. Let v be the number of subfields of F having an
irreducible conductor. Then we have

[E : C] =



lv−2+
l(l−1)

2 (q − 1)l2−1h(OF )
for k = 0,

lv−2+
l(l−1)

2
−a0(q − 1)l2−1h(OF )

for k = 1,

lv−2+
l(l−1)

2
−a0−(a1−1)−(a−2−2)−···−(ab−b)(q − 1)l2−1h(OF )

for k ≥ 2.

Corollary 3.4. For the Sinnott index (R : U) we have

(R : U) =


l

l(l−1)
2 for k = 0,

l
l(l−1)

2
−a0 for k = 1,

l
l(l−1)

2
−a0−(a1−1)−(a2−2)−···−(ab−b) for k ≥ 2.

Proof. Note that
∏s

i=1[Fp
ei
i

: k] = lv.

Corollary 3.5. Let r be the number of irreducible factors in the
conductor of F and j the number of its nontrivial subfields Ki with
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conductor fKi 6= f , t the number of ramified irreducible polynomials
whose decomposition group is bigger than its inertia group. Then,

(R : U) =



1 if r = 2,

1 if r = 3 and j = 2,

l if r = 3 and j = 3,

1 if r = 4 and j = 2,

l if r = 4 and j = 3,

l2 if r = 4 and j = 4, t 6= 0,

l3 if r = 4 and j = 4, t = 0,

From the Theorem 3.3, we immediately have the following.

Corollary 3.6. Assume that l - q − 1. If (R : U) = 1, v ≤ 1 or
(R : U) = l, v = 0, then l divides h(OF ).

Remark 3.1. It is easy to check that the condition of the above
corollary is satisfied when r = 3 or (r = 4, j = 2), (r = 4, j = 3) in the
Corollary 3.5.
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