• Title/Summary/Keyword: Field dependence

Search Result 955, Processing Time 0.026 seconds

Unequal Activation Volumes of Wall-motion and Nucleation Process in Co/Pt Multilayers

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.116-119
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers was quantitatively investigated. Serial samples of Co/Pt multilayers were prepared by dc-magnetron sputtering under various Ar pressures. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed V and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both V and R were found to be exponentially dependent on the applied reversing field. From the exponential dependencies, the activation volumes for wall motion and nucleation could be determined, based on a thermally activated relaxation model, and the wall-motion activation volume was found to be slightly larger than the nucleation activation volume.

  • PDF

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa;Singh, Vivek
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.525-531
    • /
    • 2018
  • The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Effect of turbulence driving and sonic Mach number on Davis-Chandrasekhar-Fermi method

  • Yoon, Heesun;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2019
  • Davis-Chandrasekhar-Fermi (DCF) method is a tool that is widely used to obtain the strength of the mean magnetic field projected on the plane of the sky. When there are independent eddies along the line of sight, the variation of polarization angle will decrease by the averaging effect. Therefore, the measured strength of the magnetic field can be overestimated. Cho & Yoo (2016) proposed a modified DCF method considering such effect. By using this, we quantitatively compared the results from the conventional DCF and the modified DCF methods for various sonic Mach numbers and driving schemes (the solenoidal and compressive driving). Here, we present that the modified DCF method does not show a strong dependence on the sonic Mach number or driving schemes either, while the conventional DCF method depends on the sonic Mach number for the compressive driving scheme.

  • PDF

Comparative Measurement of Transverse Nuclear Magnetization of Polarized 129Xe and 131Xe by Spin-exchange Optical Pumping

  • Yu, Ye Jin;Min, Seong Ho;Moon, Han Seb
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.466-471
    • /
    • 2020
  • We analyze the transverse nuclear magnetizations of 129Xe and 131Xe in a vapor cell containing natural Xe, 87Rb, and buffer gases. Th e Xe atoms are polarized th rough spin-exch ange optical pumping (SEOP) with Rb atoms under low-magnetic-field conditions. From the free-induction-decay (FID) signal, we measure the nuclear magnetization of the Xe atoms in the Xe-Rb vapor cell. Furthermore, we measure the dependence of the gyromagnetic ratio on the magnetization of 129Xe and 131Xe by examining the amplitude of the FID signal of each isotope, and we evaluate the relationship between the magnetic field gradient and transverse relaxation rate for both of the 129Xe and 131Xe isotopes.

Temperature dependence of photocurrent for the AgInS2 epilayers grown by hot wall epitaxy (Hot Wall Epitaxy 방법에 의해 성장된 AgInS2 박막의 광전류 온도 의존성)

  • Park, Chang-Sun;Hong, Kwang-Joon;Lee, Sang-Youl;You, Sang-Ha;Lee, Bong-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • A silver indium sulfide ($AgInS_{2}$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, ${\Delta}cr$, and the spin orbit splitting, ${\Delta}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.

High $J_{c}$'s in just-rolled $Tl_{0.8}$$Pb_{0.2}$$Bi_{0.2}$$Sr_{1.8}$$Ba_{0.2}$$Ca_{2.2}$$Cu_{3}$$O_{x}$/Ag tapes (압영제조된 $Tl_{0.8}$$Pb_{0.2}$$Bi_{0.2}$$Sr_{1.8}$$Ba_{0.2}$$Ca_{2.2}$$Cu_{3}$$O_{x}$/Ag 선재에서의 높은 $J_{c}$)

  • 정대영;김희권;이해연;허홍수;오상수;이준호;김봉준;김영철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.3-9
    • /
    • 1999
  • The grain morphology, the changes in morphology and Jc with the thermo-mechanical treatment (TMT) history, the field dependence of Jc and the nature of intergranular bonding were studied in $T_{10.8}$$Pb_{.2}$$Bi_{0.2}$$Sr_{1.8}$$Ba_{0.2}$$Ca_{2.2}$$Cu_{3}$$O_{z}$/Ag tapes. As a result, incorporation of intermediate rolling during the final heat-treatment resulted in of plate-like TI-1223 grains, and thus enhanced Jc. Jc's near 2.5$\times$104 A/cm2 at 77 K and 0 T were obtained in just rolled tapes with an excellent reproducibility. The high Jc's seem to grain-connectivity easy recovery of excellent grain-connectivity during final heat-treatment after inter -mediate rolling, probably due to retarded T1 evaporation and excessive Ca content in the present composition. The strong field dependence of Jc even in low fields, however, indicated that there still existed significant weak-links and the degree of directional grain-alignment was far from the desired one. The intergranular binding in the tapes seemed to be mainly dominated by SIS junctions.

  • PDF

Temperature dependence of exchange bias in Co/Ni anti-dot arrays

  • Seo, M.S.;Deshpande, N.G.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.436-436
    • /
    • 2011
  • Recently, spintronic devices with submicron structures are widely investigated to take advantage of their unique micromagnetic properties. In this work, we study the temperature dependence of exchange bias in bilayer anti-dot arrays made by depositing Co (40 nm)/Ni (5 nm) ferromagnetic bilayer on Si substrate to form anti-dot arrays with a diameter $1{\mu}m$. The anti-dot patterning was done only for the upper Co layer, while the Ni underlayer was kept unperforated. The temperature dependences of magnetoresistance (MR) and exchange bias were studied along magnetic easy and hard axes. The in-plane MR measurements were performed using a physical-property measurement system (PPMS ; Quantum Design Inc.) at various temperatures. The standard in-line four-point probe configuration was used for the electrical contacts. As temperature was varied, the MR data were obtained in which in-plane field (H=3 kOe) was applied in the directions along the hard and the easy axes with respect to the lattice plane. The temperature dependences of magnetic anisotropy and exchange bias were also studied along the magnetic easy and hard axes. As temperature decreases, the single peak splits into two peaks. While no exchange bias was observed along the magnetic easy axis, the exchange bias field steadily increased with decreasing temperature along the magnetic hard axis. These results were interpreted in connection with the magnetic anisotropy and the effect of the anti-dots in pinning domain wall motion along the respective direction.

  • PDF

Studies on the Dissociation Constant of Benzoic Acid and Substituted Benzoic Acids in Methanol-Water Mixtures by Conductometric Method (메탄올-물 혼합용매에서 전도도법에 의한 벤조산 및 치환된 벤조산의 해리에 관한 연구)

  • Min Soo Cho;Hyoung Ryun Park;Soon Ki Rhee;Kye Soo Lee;Bon Su Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.196-203
    • /
    • 1991
  • The $pK_a$ values of benzoic acid and meta, para-halogen substituted benzoic acids in MeOH-$H_2O$ mixtures (0∼80% of MeOH) have been determined at 25$^{\circ}$C using a conductometric method on the basis of the Fuoss-Kraus equation, and further verified using modified conductometric method of Gelb. The dependence of $pK_a$ on halogen substituents has been discussed in terms of substituent-constant (${\sigma}$), which is devided into electron-withdrawing inductive contribution (${\sigma}_1$) and electron-donating ${\pi}$-resonance one (${\sigma}_R$). The linear-dependence of ${\sigma}_1$'s on $D^{-1}$ with positive slope and that of ${\sigma}_R$'s on $D^{-1}$ with negative slope have been interpreted on the basis of field effect and through-space interaction of ${\pi}$-lone pair of halogen substituent and ionization center via ${\pi}$-system of benzene ring.

  • PDF

A Study on the Dielectric Properties and Electrical Conduction of PVDF Thin Films by Physical Vapor Deposition (진공 증착법으로 제작한 PVDF 박막의 유전 특성과 전기전도도에 대한 연구)

  • Gang, Seong-Jun;Lee, Won-Jae;Jang, Dong-Hun;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.9-15
    • /
    • 2000
  • The 3 ${\mu}{\textrm}{m}$-thick PVDF (polyvinylidene fluoride) thin film have been prepared using physical vapor deposition with electric field, and its FT-IR spectrum, dielectric property and electric conduction phenomenon have been investigated. Since the characteristic peaks are detected at 509.45 [$cm^{-1}$ /] and 1273.6 [$cm^{-1}$ /]in the FT-IR spectrum, we are confirmed that the $\beta$ -phase is dominant in the PVDF thin film. In the results of dielectric properties, the PVDF thin film shows anomalous dispersion, i.e. gradual decrease of dielectric constant with increase of frequency, and also that the dielectric absorption point changes from 200 Hz to 7000 Hz with increasing temperature of thin film, which is consistent with the Debye's theory. The activation energy ( $\Delta$H) obtained from temperature dependence of dielectric loss is 21.64 ㎉/mole. We confirm that the electric conduction mechanism of PVDF thin film is dominated by ionic conduction by investigating the dependence of the leakage current of the thin film on the temperature and the electric field.

  • PDF