A Study on the Dielectric Properties and Electrical Conduction of PVDF Thin Films by Physical Vapor Deposition

진공 증착법으로 제작한 PVDF 박막의 유전 특성과 전기전도도에 대한 연구

  • 강성준 (여수대학교 반도체·응용물리학과) ;
  • 이원재 (인하대학교 전자재료공학과) ;
  • 장동훈 (인하대학교 전자재료공학과) ;
  • 윤영섭 (인하대학교 전자재료공학과)
  • Published : 2000.05.01

Abstract

The 3 ${\mu}{\textrm}{m}$-thick PVDF (polyvinylidene fluoride) thin film have been prepared using physical vapor deposition with electric field, and its FT-IR spectrum, dielectric property and electric conduction phenomenon have been investigated. Since the characteristic peaks are detected at 509.45 [$cm^{-1}$ /] and 1273.6 [$cm^{-1}$ /]in the FT-IR spectrum, we are confirmed that the $\beta$ -phase is dominant in the PVDF thin film. In the results of dielectric properties, the PVDF thin film shows anomalous dispersion, i.e. gradual decrease of dielectric constant with increase of frequency, and also that the dielectric absorption point changes from 200 Hz to 7000 Hz with increasing temperature of thin film, which is consistent with the Debye's theory. The activation energy ( $\Delta$H) obtained from temperature dependence of dielectric loss is 21.64 ㎉/mole. We confirm that the electric conduction mechanism of PVDF thin film is dominated by ionic conduction by investigating the dependence of the leakage current of the thin film on the temperature and the electric field.

본 논문에서는 진공 증착법 (Physical Vapor Deposition) 과 전계인가를 통해 두께 3㎛ 의 PVDF (polyvinylidene fluoride) 박막을 제작하여 적외선 흡수분석과 유전특성 및 전기전도 현상을 조사하였다. 진공 증착법으로 제작한 PVDF 박막을 적외선 흡수 분광기 (FT-IR) 로 분석한 결과, 509.45 [cm/sup -1/] 와 1273.6 [cm/sup -1/]의 특성피크가 검출되는 것으로 보아 제작된 PVDF 박막이 β형임을 확인할 수 있었다. β형 PVDF 박막의 유전특성을 측정한 결과, 비유전률은 주파수가 증가함에 따라 지속적으로 감소하는 이상분산을 나타내었고 유전손실은 온도의 증가에 따라 200㎐ 에서 7000㎐ 로 유전 흡수점이 이동함을 관찰할수 있었는데, 이는 디바이 이론과 일치하는 것이었다. 유전손실의 온도 의존성으로부터 구한 활성화 에너지(ΔH) 는 21.64㎉/mo1e 로 조사되었다. β형 PVDF 박막의 누설전류밀도에 대한 온도의존성과 전계의존성을 조사하여 PVDF 박막의 전기전도기구가 이온전도임을 확인할 수 있었다.

Keywords

References

  1. S. Humrila. H. Stubb, J. Pittanen, K. Landenpera and A. Penttinen, 'Ultrasonic Transducer using PVDF', Ferroelectrics, vol. 115, pp. 267-278, 1991
  2. G. M. Sessler, Electrets, Springer-Verlang, Berlin, pp. 347-376, 1980
  3. H. S. Nalwa, Ferroelectric Polymers-Chemistry, Physics, and Applications, Marcel Dekka, Inc., New York, chap. 2, 1995
  4. H. Kawai, 'The Piezoelectricity of Poly(vinylidene fluoride)', Jpn J Appl. Phys., vol. 8, pp. 975-976, 1969 https://doi.org/10.1143/JJAP.8.975
  5. M. A. Bachmann, W. L. Gordon, J. L. Koenig and J. B. Lando, 'An Infrared Study of Phase-III Poly(vinylidene fluoride)', J. Appl. Phys., vol. 50, pp. 6106-6112, 1979 https://doi.org/10.1063/1.325780
  6. T. T. Wang and J. E. West, 'Polarization of Poly(vinylidene fluoride) by application of breakdown fields)', J. Appl. Phys., vol. 53, pp. 6552-6556, 1982 https://doi.org/10.1063/1.330075
  7. G. T. Davis, J. E. Mckinney, M. G. Broadhurst and S. C. Roth, 'Electric-Field- Induced Phase Changes in Poly(vinylidene fluoride)', J. Appl. Phys., vol. 49, pp. 4998-5002, 1978 https://doi.org/10.1063/1.324446
  8. J. C. Vickerman, Surface Analysis-The Principal Techniques, John Wiley & Sons Ltd, England, pp. 268-280, 1997
  9. K. T. Chung, B. A. Newman, J. I. Scheinbeim and K. D. Pae, 'The Pressure and Temperature dependence of Piezoelectric and Pyroelectric Response of Poled Unoriented Phase I Poly(vinylidene fluoride)', J. Appl. Phys., vol. 53, pp. 6557-6562, 1982 https://doi.org/10.1063/1.330083
  10. H. von Seggem and T. T. Wang, 'Polarization Behavior and High Field Poling of Poly(vinylidene fluoride)', J. Appl. Phys., vol. 56, pp. 2448-2452, 1984 https://doi.org/10.1063/1.334305
  11. W. D. Kingery, H K Bowen, D. R. Uhlmann, Introduction to Ceramics-2nd Ed., John Wiley & Sons, Inc., New York, chap. 18, 1976
  12. K. J. Laidler and H. Eyring, The Theory of Rate Process, McGraw-Hill, Inc., New York and London, chap. 9, 1941
  13. S. Yano, 'Dielectric Relaxation and Molecular Motion in Poly(vinylidene fluoride)', J. Polymer Science (part A-2), vol. 8, pp. 1057-1072, 1970 https://doi.org/10.1002/pol.1970.160080704
  14. S. Uemura, 'Ionic Contribution to the Complex Dielectric Constant of a Polymer under dc Bias', J. Polymer Science (Polymer Physics Edition), vol. 10, pp. 2155-2166, 1972 https://doi.org/10.1002/pol.1972.180101104
  15. M. Ohring, The Materials Science of Thin Films, Academic Press, Inc., Boston, pp. 464-470, 1992
  16. M. Kosaki, H. Oshima and M. Ieda, J. Phys. Soc. Jpn., vol. 29, pp. 1012, 1970 https://doi.org/10.1143/JPSJ.29.1012
  17. S. Saito, H. Sasabe, T. Nakajima and K. Yada, J. Polymer Science, vol. A-26, pp. 1297, 1968