• Title/Summary/Keyword: Field Experimental Design

Search Result 1,255, Processing Time 0.031 seconds

System Modeling and Robust Control of an AMB Spindle : Part II A Robust Controller Design and its Implementation

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1855-1866
    • /
    • 2003
  • This paper discusses an entire procedure for a robust controller design and its implementation of an AMB (active magnetic bearing) spindle, which is part II of the papers presenting details of system modeling and robust control of an AMB spindle. Since there are various uncertainties in an AMB system and reliability is the most important factor for applications, robust control naturally gains attentions in this field. However, tight evaluations of various uncertainties based on experimental data and appropriate performance weightings for an AMB spindle are still ongoing research topics. In addition, there are few publications on experimental justification of a designed robust controller. In this paper, uncertainties for the AMB spindle are classified and described based on the measurement and identification results of part I, and an appropriate performance weighting scheme for the AMB spindle is developed. Then, a robust control is designed through the mixed ${\mu}$ synthesis based on the validated accurate nominal model of part I, and the robust controller is reduced considering its closed loop performance. The reduced robust controller is implemented and confirmed with measurements of closed-loop responses. The AMB spindle is operated up to 57,600 rpm and performance of the designed controller is compared with a benchmark PID controller through experiments. Experiments show that the robust controller offers higher stiffness and more efficient control of rigid modes than the benchmark PID controller.

The effect of permanent magnet in MAP of magnesium alloy for external case of notebook compute (노트북 케이스용 마그네슘의 자기연마가공에서 영구자석의 효과)

  • Kim, Sang-Oh;Gang, Dea-Min;Kwak, Jae-Seob;Jung, Young-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.45-50
    • /
    • 2008
  • In previous study, it showed that the MAP was greatly effective polishing process for magnesium plate. But it had lower efficiency than magnetic materials such as SM45C. It was very difficult to cut non-magnetic materials using the MAP process because the process was fundamentally possible by help of a magnetic force. This study aimed to verify analytically formation of the magnetic field in a case of the non-magnetic materials especially focused on magnesium plate. So, In this study, the magnetic density flux was predicted using simulation program. As a result, the magnetic density flux was lower at the center of pole on inductor than outside. It had same result on the experimental verification. And magnetic force was lower according to increase of working gap. So, to improve the magnetic force, permanent magnet was installed under the workpiece. In that case, the magnetic density flux not only at center but also at outside of pole was increased. Therefore, the efficiency of magnetic abrasive polishing was also increased. A design of experimental method was adopted for assessment of parameters' effect on the MAP results of magnesium plate for improving the magnetic force.

  • PDF

Performance assessment of advanced hollow RC bridge column sections

  • Kim, T.H.;Kim, H.Y.;Lee, S.H.;Lee, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.703-722
    • /
    • 2015
  • This study investigates the performance of advanced hollow reinforced concrete (RC) bridge column sections with triangular reinforcement details. Hollow column sections are based on economic considerations of cost savings associated with reduced material and design moments, as against increased construction complexity, and hence increased labor costs. The proposed innovative reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of advanced hollow column sections under quasi-static monotonic loading. The results showed that the proposed triangular reinforcement details were equal to the existing reinforcement details, in terms of the required performance. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of the RC structures; and adopted a modified lateral confining effect model for the advanced hollow bridge column sections. Our study documents the testing of hollow RC bridge column sections with innovative reinforcement details, and presents conclusions based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm the design details, especially for the actual detailing employed in the field.

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.

An Experimental Study for Deriving Design Factors of Snow Removal Machines for Multi-span Greenhouse (연동온실 곡부 제설장치의 설계인자 도출을 위한 실험적 연구)

  • Song, Hosung;Kim, Yu Yong;Yun, Nam Kyu;Lim, Seong Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.131-140
    • /
    • 2015
  • This paper presents overall procedure by experimental study in order to deriving design factors of snow removal machine on roof of multi-span greenhouse. For the purpose of the testing, the scale model of the machine was made in the form to drive above the monorail. The test was performed in order to calculating friction coefficient of the machine and shear coefficient between sliced horizontal section of snow at constant temperature and humidity room in National Academic of Agricultural Science. As a result of the laboratory test, shear coefficient between sliced horizontal section of snow were calculated 1.60~2.37. Further investigation, we will study to derive the relationship between the real and scaled model through the field test.

Behavior Characteristic of Shaping Formation according to Joint Type of Structures (구조의 절점 형식에 따른 형상 형성의 거동 특성)

  • Kim, Jin-Woo;Eom, Jang-Sub;Lee, Yong-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.18-24
    • /
    • 2012
  • This paper concerned with the behaviour of shaping formation and the erection for SCST structure by cable-tensioning for three kinds of structure models. The joint types of experimental models are ball type joints, bolt type joints with gusset plates, and bolt type joints. The feasibility of the proposed shaping method and the reliability of the established geometric model were confirmed with a nonlinear finite element analysis and an experimental investigation for full size scaled pyramid test model and three kinds of SCST structure models. The characteristic of the behaviour of each joint type is shown in the shaping test for practical design purposes. As a results, the behaviour characteristics of joints is very significant in shaping analysis of space structures. So the joint type should be considered in the design and analysis of the shape formation for space structures. Also, in the special field condition, it could be a fast and economical method for constructing the space structure.

An Experimental Study on Evaluation of Fatigue Safety and Serviceability for the Precast Half Deck Panel Joints (반단면 프리캐스트 판넬 이음부의 피로 안전성 및 사용성 평가를 위한 실험적 연구)

  • Park, Woo Jin;Hwang, Hoon Hee;Kwon, Nam Seung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.50-56
    • /
    • 2019
  • Precast members have relatively good quality because they are manufactured in an environment suitable for quality control. A typical precast method in which pre-fabricated segments are assembled in the field requires a joint. Although the joint is a small part of the member, it greatly affects the behavior and quality of the structural member. In the previous study of this paper, the flexural strength of a joint, which is generally applied to half-depth precast deck systems, was verified to have higher strength than the design requirement. In addition, the proposed joint has been verified to have higher strength by reinforcing the connecting rebar. However, even if the flexural strength of the joints is sufficient, excessive deflection or lack of fatigue performance is likely to cause cracks in the half-depth precast deck system. In this study, the serviceability of the half-deck precast panel specimens with joints was evaluated and the experimental verification was conducted to evaluate the fatigue performance of the joint without connection rebar. As a result, the serviceability such as deflection and crack width was found to be higher than the design requirement in all the specimens. In the fatigue test, the fatigue effect was insignificant even in the absence of connection rebar.

Experimental Study on Gas Explosion According to the Effect of Confinement and Congestion Levels (밀폐도 및 밀집도의 영향에 따른 가스폭발 실험 연구)

  • Boohyoung Bang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.56-61
    • /
    • 2023
  • The plant is an important facility as a infrastructure, and ensuring safety against possible accidents such as gas leaks and explosions must be considered in the design. However, there is little study on explosion pressure in plants for reasons such as economic feasibility, and overpressure data on this field is insufficient. In this study, an experimental design plan considering the explosion scenario that may occur in the plant was presented, and the explosion pressure was confirmed through an explosion experiment. Hydrogen-methane mixed gas was used as a combustible material, and the effect of confinement and congestion on overpressure was studied. The effect of overlapping pressure waves during deflagration and the turbulence effect by congested pipes are discussed. The results of this study can be used as input data in various safety designs.

Fire Response Education for Hospital Healthcare Providers: A Scoping Review (병원 의료종사자 대상 화재 대응 교육 현황: 주제범위 문헌고찰)

  • Min-Ji Kim;Seung-Eun Lee;Hyun-Eun Park
    • Quality Improvement in Health Care
    • /
    • v.29 no.2
    • /
    • pp.32-46
    • /
    • 2023
  • Purpose: Fire response education is critical for healthcare providers working in hospitals to ensure a safe environment for patients and staff. However, a comprehensive review that thoroughly examines the contents, methodologies, and outcomes of fire response education in hospitals is currently lacking. Methods: We conducted a scoping review by adhering to the framework proposed by Arksey and O'Malley. We searched five electronic databases for literature published after 1990, using the key categories of "hospitals," "fires," and "education." As a result, we identified 15 relevant articles that met our inclusion criteria for the review. Results: Of the 15 articles, 12 had adopted a quasi-experimental design and the remaining 3 had employed a true experimental design. The majority of these studies (11 out of 15) were conducted in the United States, with 4 studies forming committees or teams dedicated to education. Simulation methods were used in 13 studies, while 2 studies had employed a combination of methods. All studies focused on first-response procedures based on RACE (Rescue, Alarm, Contain, Extinguish/Evacuation). Outcome measures included the learners' overall experience, performance in the educational settings, and performance in the field, with all studies reporting positive results following the educational interventions. Conclusion: Our review highlights the importance of multi-professional and multi-departmental educational strategies based on institutional-level initiatives for healthcare providers to create a safe hospital environment.

Statistical Design of Experiments and Analysis: Hierarchical Variance Components and Wafer-Level Uniformity on Gate Poly-Silicon Critical Dimension (통계적 실험계획 및 분석: Gate Poly-Silicon의 Critical Dimension에 대한 계층적 분산 구성요소 및 웨이퍼 수준 균일성)

  • Park, Sung-min;Kim, Byeong-yun;Lee, Jeong-in
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • Gate poly-silicon critical dimension is a prime characteristic of a metal-oxide-semiconductor field effect transistor. It is important to achieve the uniformity of gate poly-silicon critical dimension in order that a semiconductor device has acceptable electrical test characteristics as well as a semiconductor wafer fabrication process has a competitive net-die-per-wafer yield. However, on gate poly-silicon critical dimension, the complexity associated with a semiconductor wafer fabrication process entails hierarchical variance components according to run-to-run, wafer-to-wafer and even die-to-die production unit changes. Specifically, estimates of the hierarchical variance components are required not only for disclosing dominant sources of the variation but also for testing the wafer-level uniformity. In this paper, two experimental designs, a two-stage nested design and a randomized complete block design are considered in order to estimate the hierarchical variance components. Since gate poly-silicon critical dimensions are collected from fixed die positions within wafers, a factor representing die positions can be regarded as fixed in linear statistical models for the designs. In this context, the two-stage nested design also checks the wafer-level uniformity taking all sampled runs into account. In more detail, using variance estimates derived from randomized complete block designs, Duncan's multiple range test examines the wafer-level uniformity for each run. Consequently, a framework presented in this study could provide guidelines to practitioners on estimating the hierarchical variance components and testing the wafer-level uniformity in parallel for any characteristics concerned in semiconductor wafer fabrication processes. Statistical analysis is illustrated for an experimental dataset from a real pilot semiconductor wafer fabrication process.