• 제목/요약/키워드: Field Effect Mobility

검색결과 517건 처리시간 0.027초

유기물 게이트 절연체를 사용한 pentacene 유기 박막 트랜지스터의 전기적 특성에 관한 연구 (A Study on the Electrical Characteristics of Pentacene Organic Thin Film Transistor using Organic Gate Insulator)

  • 김윤명;김옥병;김정수;김영관;정태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.446-448
    • /
    • 2000
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. In this study, pentacene thin films and electrode materials were deposited by Organic Molecular Beam Deposition (OMBD) and vacuum evaporation respectively. For the gate dielectric layer, OPTMER PC403 photo acryl (JSR Coporation.) was spin-coated and cured at $220^{\circ}C$. Electrical characteristics of the devices were investigated, where the channel length and width was $50{\mu}m$ and 5 mm. It was found that field effect mobility was $0.039\;cm^2V^{-1}s^{-1}$, threshold voltage was -7 V, and on/off current ratio was $10^6$.

  • PDF

고상 결정화로 제작한 다결성 실리콘 박막 트랜지스터에서의 열화특성 분석 (The Analysis of Degradation Characteristics in Poly-Silicon Thin film Transistor Formed by Solid Phase Crystallization)

  • 정은식;이용재
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.26-32
    • /
    • 2003
  • Then-channel poly-Si thin-film transistors (poly-Si TFT's) formed by solid phase crystallization (SPC) method on glass were measured to obtain the electrical parameters such as of I-V characteristics, mobility, leakage current, threshold voltage, and subthreshold slope. Then, devices were analyzed to obtain the reliability and appliability on TFT-LCD with large-size and high density. In n-channel poly-Si TFT with 5$\mu\textrm{m}$/2$\mu\textrm{m}$, 8$\mu\textrm{m}$, 30$\mu\textrm{m}$ devices of channel width/length, the field effect mobilities are 111, 116, 125 $\textrm{cm}^2$/V-s and leakage currents are 0.6, 0.1, and 0.02 pA/$\mu\textrm{m}$, respectively. Low threshold voltage and subthreshold slope, and good ON-OFF ratio are shown, as well. Thus. the poly-Si TFT's used by SPC are expected to be applied on TFT-LCD with large-size and high density, which can integrate the display panel and peripheral circuit on a targe glass substrate.

투명 유연 a-IGZO 박막트랜지스터의 제작 및 전기적 특성 (Fabrication and Electrical Characteristics of Transparent and Bendable a-IGZO Thin-film Transistors)

  • 박석형;조경아;오현곤;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.120-124
    • /
    • 2016
  • In this study, we fabricate transparent and bendable a-IGZO (amorphous indium gallium zinc oxide) TFTs (thin-film transistors) with a-IZO (amorphous indium zinc oxide) transparent electrodes on plastic substrates and investigate their electrical characteristics under bending states. Our a-IGZO TFTs show a high transmittance of 82% at a wavelength of 550 nm. And these TFTs have an $I_{on}/I_{off}$ ratio of $1.8{\times}10^8$, a field effect mobility of $15.4cm^2/V{\cdot}s$, and a subthreshold swing of 186 mV/dec. The good electrical characteristics are retained even after bending with a curvature radius of 18 mm corresponding to a strain of 0.5% owing to mechanical durability of the transparent electrodes used in this study.

Pentacene을 활성층으로 이용한 유기 TFT의 특성 연구 (Study on the Characteristics of Organic TFT Using Pentacene as a Active Layer)

  • 김영관;손병청;김윤명;표상우
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.191-196
    • /
    • 2001
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. In this study, pentacene thin films and electrode materials were deposited by Organic Molecular Beam Deposition (OMBD) and vacuum evaporation respectively. For the gate dielectric layer, photoacryl (OPTMER PC403 from JSR Co.) was spin-coated and cured at $220^{\circ}C$. Electrical characteristics of the device were investigated, where the channel length and width was 50 ${\mu}m$ and 5 mm. It was found that field effect mobility was 0.039 $cm^{2}V^{-1}s^{-1}$, threshold voltage was -8 V, and on/off current ratio was $10^{6}$. Further details will be discussed.

고분자 완충층을 이용한 유기박막트랜지스터 (Organic Thin-Film Transistors with Polymer Buffer Layer)

  • 최학범;형건우;박일홍;황선욱;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.182-183
    • /
    • 2008
  • We fabricated a pentacene thin film transistor with Poly-vinylalcohol (PVA) as a dielectric. And we used Poly(9-vinylcarbazole) (PVK) as a buffer layer to improve the electrical characteristics. PVK is a material used often host material for OLED device, as it has good film forming properties, large HOMO-LUMO(highest occupied molecular orbital-lowest unoccupied molecular orbital) bandgap. The performance of a OTFT device with PVA gate dielectric was improved by using the PVK. Field effect mobility, threshold voltage, and on-off current ratio of device with PVK layer were about 0.6 $cm^2$/Vs, -17V, and $5\times10^5$, respectively.

  • PDF

고내압 SiC-IGBT 소자 소형화에 관한 연구 (A Study on High Voltage SiC-IGBT Device Miniaturization)

  • 김성수;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.785-789
    • /
    • 2013
  • Silicon Carbide (SiC) is the material with the wide band-gap (3.26 eV), high critical electric field (~2.3 MV/cm), and high bulk electron mobility (~900 $cm^2/Vs$). These electronic properties allow attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. In general, device design has a significant effect on the switching and electrical characteristics. It is known that in this paper, we demonstrated that the switching performance and breakdown voltage of IGBT is dependent with doping concentration of p-base region and drift layer by using 2-D simulations. As a result, electrical characteristics of SiC-IGBT deivce is higher breakdown voltage ($V_B$= 1,600 V), lower on-resistance ($R_{on}$= 0.43 $m{\Omega}{\cdot}cm^2$) than Si-IGBT. Also, we determined that processing time and cost is reduced by the depth of n-drift region of IGBT was reduced.

$LiNbO_3$ 강유전체를 이용한 MFISFET의 제작 및 특성 (Fabrication and Properties of MFISFET Using $LiNbO_3$ Ferroelectric Films)

  • 정순원;구경완
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.135-139
    • /
    • 2008
  • MFISFETs with platinum electrode on the $LiNbO_3$/aluminum nitride/Si(100) structures were successfully fabricated and the properties of the FETs have been discussed. $I_D-V_G$ characteristics of MFISFETs for linear region (that is, 0.1 V of the drain voltage) showed hysteresis loop with a counter-clockwise trace due to the ferroelectric nature of $LiNbO_3$ films. A memory window (i.e., threshold voltage shift) of the fabricated device was about 2[V] for a sweep from -4 to +4[V]. The estimated field-effect electron mobility and transconductance on a linear region were 530[$cm^2/V{\cdot}s$] and 0.16[mS/mm], respectively. The drain current of 27[${\mu}A$] on the "on" state was more than 3 orders of magnitude larger than that of 30[nA] on the "off" state at the same "read" gate voltage of l.5[V], which means the memory operation of the MFISFET.

Investigation of contact resistance between metal electrodes and amorphous gallium indium zinc oxide (a-GIZO) thin-film transistors

  • Kim, Woong-Sun;Moon, Yeon-Keon;Lee, Sih;Kang, Byung-Woo;Kwon, Tae-Seok;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.546-549
    • /
    • 2009
  • In this paper, we investigated the effects of different source/drain (S/D) electrode materials in thin film transistors (TFTs) based on indium-gallium-zinc oxide (IGZO) semiconductor. A transfer length and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with a field-effect mobility (${\mu}_{FE}$) of 10.0 $cm^2$/Vs.

  • PDF

LiNbO$_3$를 이용한 MFSFET의 제작 및 특성 (Fabrication and Properties of MFSFET′s using LiNbO$_3$ film)

  • 정순원;김채규;이상우;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 1998
  • Prototype MFSFET′s using ferroelectric oxide LiNbO$_3$ as a gate insulator have been successfully fabricated with the help of 2 sheets of metal masks and demonstrated nonvolatile memory operations of the MFSFET′s. The estimated field-effect electron mobility and transconductance on a linear region of the fabricated FET were 600 $\textrm{cm}^2$/V.s and 0.16 mS/mm, respectively. The drain current of the "on" state was more than 4 orders of magnitude larger than the "off" state current at the same "read" gate voltage of 0.5 V, which means the memory operation of the MFSFET. A write voltage as low as $\pm$3 V, which is applicable to low power integrate circuits, was used for polarization reversal.

  • PDF

Nonvolatile Ferroelectric P(VDF-TrFE) Memory Transistors Based on Inkjet-Printed Organic Semiconductor

  • Jung, Soon-Won;Na, Bock Soon;Baeg, Kang-Jun;Kim, Minseok;Yoon, Sung-Min;Kim, Juhwan;Kim, Dong-Yu;You, In-Kyu
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.734-737
    • /
    • 2013
  • Nonvolatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on an organic thin-film transistor with inkjet-printed dodecyl-substituted thienylenevinylene-thiophene copolymer (PC12TV12T) as the active layer is developed. The memory window is 4.5 V with a gate voltage sweep of -12.5 V to 12.5 V. The field effect mobility, on/off ratio, and gate leakage current are 0.1 $cm^2/Vs$, $10^5$, and $10^{-10}$ A, respectively. Although the retention behaviors should be improved and optimized, the obtained characteristics are very promising for future flexible electronics.